Investigating the Role of Environmental Factors on the Survival, Stability, and Transmission of SARS-CoV-2, and Their Contribution to COVID-19 Outbreak: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Coronaviruses: Origins and Pathology
3.2. SARS-CoV-2 and Environmental/Climatic Factors
3.2.1. Disinfectants and Personal Protective Equipment
3.2.2. Unknown Transfer Methods
3.2.3. The Role of Public Transportation in the Spread of COVID-19
3.2.4. Hospital and Municipal Waste Management
3.3. SARS-CoV-2 Transmission and Environmental Conditions
- Direct transmission (transmission through the air by talking, coughing, sneezing, and breathing air droplets)
- Contact transmission (i.e., through contact with the nasal, oral, and ocular mucosa).
3.3.1. Virus Volume and Transmission
3.3.2. Stability and Transmission of the Virus
3.3.3. Stability in Different Environments
3.4. SARS-CoV-2 Importance and Implications for Human Health
3.4.1. COVID-19 and Host Interaction with Virus
3.4.2. The Role of Age and Underlying Diseases
3.4.3. The Role of Economic Growth and Access to Public Health
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkhovsky, S.; Lenshin, S.; Romashin, A.; Vishnevskaya, T.; Vyshemirsky, O.; Bulycheva, Y.; Lvov, D.; Gitelman, A. SARS-like Coronaviruses in Horseshoe Bats (Rhinolophus Spp.) in Russia, 2020. Viruses 2022, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Moscatt, V.; Marino, A.; Pampaloni, A.; Scuderi, D.; Ceccarelli, M.; Benanti, F.; Gussio, M.; Larocca, L.; Boscia, V.; et al. Clinical Characteristics and Predictors of Death among Hospitalized Patients Infected with SARS-CoV-2 in Sicily, Italy: A Retrospective Observational Study. Biomed. Rep. 2022, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Steele, M.K.; Couture, A.; Reed, C.; Iuliano, D.; Whitaker, M.; Fast, H.; Hall, A.J.; MacNeil, A.; Cadwell, B.; Marks, K.J.; et al. Estimated Number of COVID-19 Infections, Hospitalizations, and Deaths Prevented Among Vaccinated Persons in the US, December 2020 to September 2021. JAMA Netw. Open 2022, 5, e2220385. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, Z. The Strategy of Vaccination and Global Pandemic: How Framing May Thrive on Strategy During and After COVID-19. Eur. Res. Stud. J. 2021, 14, 532–541. [Google Scholar] [CrossRef]
- Makadzange, A.T.; Lau, C.; Dietrich, J.; Hlupeni, A.; Myburgh, N.; Gundidza, P.; Elose, N.; Mahdi, S.; James, W.; Stanberry, L.; et al. Investigating Attitudes, Motivations and Key Influencers for Vaccine Uptake among Late Adopters of COVID-19 Vaccination in Africa. medRxiv 2022. [Google Scholar] [CrossRef]
- Lumley, S.F.; Richens, N.; Lees, E.; Cregan, J.; Kalimeris, E.; Oakley, S.; Morgan, M.; Segal, S.; Dawson, M.; Walker, A.S.; et al. Changes in Paediatric Respiratory Infections at a UK Teaching Hospital 2016–2021; Impact of the SARS-CoV-2 Pandemic. J. Infect. 2022, 84, 40–47. [Google Scholar] [CrossRef]
- Weaver, A.K.; Head, J.R.; Gould, C.F.; Carlton, E.J.; Remais, J.V. Environmental Factors Influencing COVID-19 Incidence and Severity. Annu. Rev. Public Health 2022, 43, 271–291. [Google Scholar] [CrossRef]
- Cheng, T.C.; Lo, C.C. Older Adults’ Preventive Behaviors During COVID-19 Outbreak: Application of Multiple Disadvantage Model. J. Prev. 2022, 43, 499–511. [Google Scholar] [CrossRef]
- Patial, S.; Nazim, M.; Khan, A.A.P.; Raizada, P.; Singh, P.; Hussain, C.M.; Asiri, A.M. Sustainable Solutions for Indoor Pollution Abatement during COVID Phase: A Critical Study on Current Technologies & Challenges. J. Hazard. Mater. Adv. 2022, 7, 100097. [Google Scholar] [CrossRef]
- Bañuelos Gimeno, J.; Blanco, A.; Díaz, J.; Linares, C.; López, J.A.; Navas, M.A.; Sánchez-Martínez, G.; Luna, Y.; Hervella, B.; Belda, F.; et al. Air Pollution and Meteorological Variables’ Effects on COVID-19 First and Second Waves in Spain. Int. J. Environ. Sci. Technol. 2022, 22, 1–14. [Google Scholar] [CrossRef]
- Ismail, I.M.I.; Rashid, M.I.; Ali, N.; Altaf, B.A.S.; Munir, M. Temperature, Humidity and Outdoor Air Quality Indicators Influence COVID-19 Spread Rate and Mortality in Major Cities of Saudi Arabia. Environ. Res. 2022, 204, 112071. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Z.; Liu, M.; Zhu, Y.; Liu, Y.; Kuetche, M.W.N.; Wang, J.; Wang, X.; Liu, X.; Li, X.; et al. Association between Temperature and COVID-19 Transmission in 153 Countries. Environ. Sci. Pollut. Res. 2022, 29, 16017–16027. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Prettner, K.; Kuhn, M.; Geldsetzer, P.; Wang, C.; Bärnighausen, T.; Bloom, D.E. Climate and the Spread of COVID-19. Sci. Rep. 2021, 11, 9042. [Google Scholar] [CrossRef] [PubMed]
- Inaida, S.; Paul, R.E.; Matsuno, S. Viral Transmissibility of SARS-CoV-2 Accelerates in the Winter, Similarly to Influenza Epidemics. Am. J. Infect. Control 2022, 50, 1070–1076. [Google Scholar] [CrossRef]
- Aboura, S. The Role of Climate on COVID-19 Spread in France. Int. J. Environ. Health Res. 2022, 3, 1–14. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A. Impact of COVID-19 Pandemic on Waste Management. Environ. Dev. Sustain. 2021, 23, 7951–7960. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A. Global Assessment of Environment, Health and Economic Impact of the Novel Coronavirus (COVID-19). Environ. Dev. Sustain. 2021, 23, 5005–5015. [Google Scholar] [CrossRef]
- Liu, F.; Qian, H. Uncertainty Analysis of Facemasks in Mitigating SARS-CoV-2 Transmission. Environ. Pollut. 2022, 303, 119167. [Google Scholar] [CrossRef]
- Raslan, M.; Eslam, M.S.; Sara, A.R.; Sabri, N.A. Cannabis Addiction and COVID-19 Protocols: Are Safety and Efficacy Issues Questionable? Saudi J. Med. Pharm. Sci. 2022, 8, 297–305. [Google Scholar] [CrossRef]
- Noori, R.; Sardar, M. An Outlook on Potential Protein Targets of COVID-19 as a Druggable Site. Mol. Biol. Rep. 2022, 6, 1–20. [Google Scholar] [CrossRef]
- Hannawi, S.; Hannawi, H.; Naeem, K.B.; Elemam, N.M.; Hachim, M.Y.; Hachim, I.Y.; Darwish, A.S.; Al Salmi, I. Clinical and Laboratory Profile of Hospitalized Symptomatic COVID-19 Patients: Case Series Study From the First COVID-19 Center in the UAE. Front. Cell Infect. Microbiol. 2021, 11, 632965. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of Temperature and Humidity on the Daily New Cases and New Deaths of COVID-19 in 166 Countries. Sci. Total Environ. 2020, 729, 139051. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.G.; Qin, L.; Puah, S.H. COVID-19 Acute Respiratory Distress Syndrome (ARDS): Clinical Features and Differences from Typical Pre-COVID-19 ARDS. Med. J. Aust. 2020, 213, 54–56.e1. [Google Scholar] [CrossRef]
- Naidu, A.S.; Shahidi, F.; Wang, C.-K.; Sato, K.; Wirakartakusumah, A.; Aworhf, O.C.; Halliwell, B.; Clemensh, R.A. SARS-CoV-2-Induced Host Metabolic Reprogram (HMR): Nutritional Interventions for Global Management of COVID-19 and Post-Acute Sequelae of COVID-19 (PASC). J. Food Bioact. 2022, 18, 1–42. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique Epidemiological and Clinical Features of the Emerging 2019 Novel Coronavirus Pneumonia (COVID-19) Implicate Special Control Measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef]
- Shaw Stewart, P.D.; Bach, J.L. Temperature Dependent Viral Tropism: Understanding Viral Seasonality and Pathogenicity as Applied to the Avoidance and Treatment of Endemic Viral Respiratory Illnesses. Rev. Med. Virol. 2022, 32, e2241. [Google Scholar] [CrossRef] [PubMed]
- Colston, J.M.; Hinson, P.; Nguyen, N.-L.H.; Chen, Y.T.; Kerr, G.H.; Gardner, L.M.; Quispe, A.M.; Kosek, M.N. Effects of Hydrometeorological and Other Factors on SARS-CoV-2 Reproduction Number in Three Contiguous Countries of Tropical Andean South America: A. medRxiv 2022. [Google Scholar] [CrossRef]
- Song, P.; Han, H.; Feng, H.; Hui, Y.; Zhou, T.; Meng, W.; Yan, J.; Li, J.; Fang, Y.; Liu, P.; et al. High Altitude Relieves Transmission Risks of COVID-19 through Meteorological and Environmental Factors: Evidence from China. Environ. Res. 2022, 212, 113214. [Google Scholar] [CrossRef]
- Pramanik, M.; Udmale, P.; Bisht, P.; Chowdhury, K.; Szabo, S.; Pal, I. Climatic Factors Influence the Spread of COVID-19 in Russia. Int. J. Environ. Health Res. 2020, 32, 723–737. [Google Scholar] [CrossRef]
- Rovetta, A.; Bhagavathula, A.S. The Impact of COVID-19 on Mortality in Italy: Retrospective Analysis of Epidemiological Trends. JMIR Public Health Surveill. 2022, 8, e36022. [Google Scholar] [CrossRef]
- Yang, X.-D.; Li, H.-L.; Cao, Y.-E.; Yang, X.-D.; Li, H.-L.; Cao, Y.-E. Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location. Int. J. Environ. Res. Public Health 2021, 18, 484. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, J.; Li, C.; Zhao, Y.; Wang, D.; Huang, Z.; Yang, K. The Role of Seasonality in the Spread of COVID-19 Pandemic. Environ. Res. 2021, 195, 110874. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Yang, B.Y.; Wang, L.J.; Liao, K.; Sun, N.; Liu, Y.C.; Ma, R.F.; Yang, X.D. A Meta-Analysis Result: Uneven Influences of Season, Geo-Spatial Scale and Latitude on Relationship between Meteorological Factors and the COVID-19 Transmission. Environ. Res. 2022, 212, 113297. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, M.; Chowdhury, K.; Rana, M.J.; Bisht, P.; Pal, R.; Szabo, S.; Pal, I.; Behera, B.; Liang, Q.; Padmadas, S.S.; et al. Climatic Influence on the Magnitude of COVID-19 Outbreak: A Stochastic Model-Based Global Analysis. Int J. Environ. Health Res. 2022, 32, 1095–1110. [Google Scholar] [CrossRef]
- Bashir, M.F.; MA, B.J.; Bilal; Komal, B.; Bashir, M.A.; Farooq, T.H.; Iqbal, N.; Bashir, M. Correlation between Environmental Pollution Indicators and COVID-19 Pandemic: A Brief Study in Californian Context. Environ. Res. 2020, 187, 109652. [Google Scholar] [CrossRef]
- Fall in CO2 Emissions Due to Historical Events Globally 2020|Statista. Available online: https://www.statista.com/statistics/1111452/co2-emissions-decrease-due-to-major-historical-events-globally/ (accessed on 23 August 2022).
- Almohammed, O.A.; Aldwihi, L.A.; Alragas, A.M.; Almoteer, A.I.; Gopalakrishnan, S.; Alqahtani, N.M. Knowledge, Attitude, and Practices Associated With COVID-19 Among Healthcare Workers in Hospitals: A Cross-Sectional Study in Saudi Arabia. Front. Public Health 2021, 9, 643053. [Google Scholar] [CrossRef]
- Shams, M.; Alam, I.; Mahbub, M.S. Plastic Pollution during COVID-19: Plastic Waste Directives and Its Long-Term Impact on the Environment. Environ. Adv. 2021, 5, 100119. [Google Scholar] [CrossRef]
- Reyes Gonzalez, S. Waste Management and the COVID-19 Pandemic in Developed and Developing Countries: A Mexican Case Study. Available online: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-4548-8.ch013 (accessed on 24 June 2022).
- Fortune Business InsightsTM|Global Market Research Reports & Consulting. Available online: https://www.fortunebusinessinsights.com/ (accessed on 19 July 2022).
- Getson, C.; Nejat, G. Socially Assistive Robots Helping Older Adults through the Pandemic and Life after COVID-19. Robotics 2021, 10, 106. [Google Scholar] [CrossRef]
- Masoumbeigi, H.; Med, G.G.-J.M. Challenges of Iranian Environmental Health during the COVID-19 Epidemic: Lessons for the Future. J. Mil Med 2020, 22, 1086–1098. [Google Scholar]
- Bhat, S.A.; Sher, F.; Kumar, R.; Karahmet, E.; Haq, S.A.U.; Zafar, A.; Lima, E.C. Environmental and Health Impacts of Spraying COVID-19 Disinfectants with Associated Challenges. Environ. Sci. Pollut. Res. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Bontempi, E. Commercial Exchanges Instead of Air Pollution as Possible Origin of COVID-19 Initial Diffusion Phase in Italy: More Efforts Are Necessary to Address Interdisciplinary Research. Environ. Res. 2020, 188, 109775. [Google Scholar] [CrossRef] [PubMed]
- Paleologos, E.K.; O’Kelly, B.C.; Tang, C.S.; Cornell, K.; Rodríguez-Chueca, J.; Abuel-Naga, H.; Koda, E.; Farid, A.; Vaverková, M.D.; Kostarelos, K.; et al. Post COVID-19 Water and Waste Water Management to Protect Public Health and Geoenvironment. Environ. Geotech. 2021, 8, 193–207. [Google Scholar] [CrossRef]
- Giacobbo, A.; Rodrigues, M.A.S.; Ferreira, J.Z.; Bernardes, A.M.; de Pinho, M.N. A Critical Review on SARS-CoV-2 Infectivity in Water and Wastewater. What Do We Know? Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Singh, S.; Kumar, V.; Kapoor, D.; Dhanjal, D.S.; Bhatia, D.; Jan, S.; Singh, N.; Romero, R.; Ramamurthy, P.C.; Singh, J. Detection and Disinfection of COVID-19 Virus in Wastewater. Environ. Chem. Lett. 2021, 19, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Li, X.; Sunita, K.; Lokhandwala, S.; Gautam, P.; Suresh, S.; Sarma, H.; Vellingiri, B.; Dey, A.; Bontempi, E.; et al. SARS-CoV-2 and Other Pathogens in Municipal Wastewater, Landfill Leachate, and Solid Waste: A Review about Virus Surveillance, Infectivity, and Inactivation. Environ. Res. 2022, 203, 111839. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, Z. Why Some Countries Win and Others Loose from the COVID-19 Pandemic? Navigating the Uncertainty. Eur. Res. Stud. 2021, 24, 1217–1226. [Google Scholar] [CrossRef]
- Ku, D.; Yeon, C.; Lee, S.; Lee, K.; Hwang, K.; Li, Y.C.; Wong, S.C. Safe Traveling in Public Transport amid COVID-19. Sci. Adv. 2021, 7, eabg3691. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, A.; Tavakoli, A.; Mohammadi, M. Evaluation of Air Pollutant Concentrations and Environmental Parameters under Normal Condition and during Novel Coronavirus Pandemic, a Case Study in a Hospital. Iran. J. Health Environ. 2021, 14, 517–532. [Google Scholar]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary Reduction in Daily Global CO2 Emissions during the COVID-19 Forced Confinement. Nat. Clim. Change 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Emission Reductions Due to COVID-19 by Sector 2020|Statista. Available online: https://www.statista.com/statistics/1120798/global-emission-reductions-due-to-covid-19-by-source/ (accessed on 21 August 2022).
- Dietz, L.; Horve, P.; Coil, D.; Fretz, M.; Eisen, J. 2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature and Built Environment (BE) Considerations to Reduce Transmission. Biology 2019, 5, e00245-20. [Google Scholar]
- Yousefi, M.; Oskoei, V.; Jonidi Jafari, A.; Farzadkia, M.; Hasham Firooz, M.; Abdollahinejad, B.; Torkashvand, J. Municipal Solid Waste Management during COVID-19 Pandemic: Effects and Repercussions. Environ. Sci. Pollut. Res. 2021, 28, 32200–32209. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Billah, M.M.; Sarker, A. COVID-19 Pandemic and Healthcare Solid Waste Management Strategy–A Mini-Review; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Urban, R.C.; Nakada, L.Y.K. COVID-19 Pandemic: Solid Waste and Environmental Impacts in Brazil. Sci. Total Environ. 2021, 755, 142471. [Google Scholar] [CrossRef] [PubMed]
- News, Sport and Opinion from the Guardian’s Global Edition|The Guardian. Available online: https://www.theguardian.com/international (accessed on 19 July 2022).
- Wei, Y.; Dong, Z.; Fan, W.; Xu, K.; Tang, S.; Wang, Y.; Wu, F. A Narrative Review on the Role of Temperature and Humidity in COVID-19: Transmission, Persistence, and Epidemiological Evidence. Eco-Environ. Health 2022, 1, 73–85. [Google Scholar] [CrossRef]
- Hirose, R.; Itoh, Y.; Ikegaya, H.; Miyazaki, H.; Watanabe, N.; Yoshida, T.; Bandou, R.; Daidoji, T.; Nakaya, T. Differences in Environmental Stability among SARS-CoV-2 Variants of Concern: Omicron Has Higher Stability. bioRxiv 2022. [Google Scholar] [CrossRef]
- Shao, L.; Ge, S.; Jones, T.; Santosh, M.; Silva, L.F.O.; Cao, Y.; Oliveira, M.L.S.; Zhang, M.; BéruBé, K. The Role of Airborne Particles and Environmental Considerations in the Transmission of SARS-CoV-2. Geosci. Front. 2021, 12, 101189. [Google Scholar] [CrossRef]
- Coleman, K.K.; Jie Wen Tay, D.; Sen Tan, K.; Wei Xiang Ong, S.; The Son, T.; Hui Koh, M.; Qing Chin, Y.; Nasir, H.; Minn Mak, T.; Jang Hann Chu, J.; et al. Viral Load of SARS-CoV-2 in Respiratory Aerosols Emitted by COVID-19 Patients While Breathing, Talking, and Singing. MedRxiv 2021. [Google Scholar] [CrossRef]
- Tang, J.W.; Bahnfleth, W.P.; Bluyssen, P.M.; Buonanno, G.; Jimenez, J.L.; Kurnitski, J.; Li, Y.; Miller, S.; Sekhar, C.; Morawska, L.; et al. Dismantling Myths on the Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 2021, 110, 89–96. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z.; Stranges, S.; Zhao, X.; Sadiq, R.; Olea-Popelka, F.; Peng, C.; Haghighat, F.; Yu, T. Dynamics of SARS-CoV-2 Spreading under the Influence of Environmental Factors and Strategies to Tackle the Pandemic: A Systematic Review. Sustain. Cities Soc. 2022, 81, 103840. [Google Scholar] [CrossRef]
- Ji, S.; Xiao, S.; Wang, H.; Lei, H. Increasing Contributions of Airborne Route in SARS-CoV-2 Omicron Variant Transmission Compared with the Ancestral Strain. Build. Environ. 2022, 221, 109328. [Google Scholar] [CrossRef]
- Singh, S.; Garcia, G.; Shah, R.; Kramerov, A.A.; Wright, R.E.; Spektor, T.M.; Ljubimov, A.V.; Arumugaswami, V.; Kumar, A. SARS-CoV-2 and Its Beta Variant of Concern Infect Human Conjunctival Epithelial Cells and Induce Differential Antiviral Innate Immune Response. Ocul. Surf. 2022, 23, 184–194. [Google Scholar] [CrossRef]
- Chowdhury, S.M.E.K.; Forkan, M.; Ahmed, S.F.; Agarwal, P.; Shawkat Ali, A.B.M.; Muyeen, S.M. Modeling the SARS-CoV-2 Parallel Transmission Dynamics: Asymptomatic and Symptomatic Pathways. Comput. Biol. Med. 2022, 143, 105264. [Google Scholar] [CrossRef]
- Chu, D.T.; Singh, V.; Vu Ngoc, S.M.; Nguyen, T.L.; Barceló, D. Transmission of SARS-CoV-2 Infections and Exposure in Surfaces, Points and Wastewaters: A Global One Health Perspective. Case Stud. Chem. Environ. Eng. 2022, 5, 100184. [Google Scholar] [CrossRef]
- Freitag, S.; Howell, S.G.; Jim, K.T.C. Estimating the Reduction in SARS-CoV-2 Viral Load by Common Face Masks with a Simple Leak Model. Aerosol Sci. Technol. 2022, 56, 573–591. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Markin, N.W.; Herrera, V.L.; Ackerman, D.N.; Rivera, D.N.; Lucero, G.A.; Lisco, S.J. Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles. Viruses 2022, 14, 1275. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Lee, C.W.; Park, D.I.; Woo, H.Y.; Cheong, H.S.; Shin, H.C.; Ahn, K.; Kwon, M.J.; Joo, E.J. Detection of SARS-CoV-2 in Fecal Samples From Patients With Asymptomatic and Mild COVID-19 in Korea. Clin. Gastroenterol. Hepatol. 2021, 19, 1387. [Google Scholar] [CrossRef] [PubMed]
- Dergham, J.; Delerce, J.; Bedotto, M.; La Scola, B.; Moal, V. Isolation of Viable SARS-CoV-2 Virus from Feces of an Immunocompromised Patient Suggesting a Possible Fecal Mode of Transmission. J. Clin. Med. 2021, 10, 2696. [Google Scholar] [CrossRef]
- Cerrada-Romero, C.; Berastegui-Cabrera, J.; Camacho-Martínez, P.; Goikoetxea-Aguirre, J.; Pérez-Palacios, P.; Santibáñez, S.; Blanco-Vidal, J.; Valiente, A.; Alba, J.; Rodríguez-Álvarez, R.; et al. Excretion and Viability of SARS-CoV-2 in Feces and Its Association with the Clinical Outcome of COVID-19. Sci. Rep. 2022, 12, 7397. [Google Scholar] [CrossRef]
- Duval, D.; Palmer, J.C.; Tudge, I.; Pearce-Smith, N.; O’Connell, E.; Bennett, A.; Clark, R. Long Distance Airborne Transmission of SARS-CoV-2: Rapid Systematic Review. BMJ 2022, 377, e068743. [Google Scholar] [CrossRef]
- Samelson, A.J.; Tran, Q.D.; Robinot, R.; Carrau, L.; Rezelj, V.V.; Kain, A.M.; Chen, M.; Ramadoss, G.N.; Guo, X.; Lim, S.A.; et al. BRD2 Inhibition Blocks SARS-CoV-2 Infection by Reducing Transcription of the Host Cell Receptor ACE2. Nat. Cell Biol. 2022, 24, 24–34. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- WHO. Infection Prevention and Control in the Context of Coronavirus Disease (COVID-19): A Living Guideline; World Health Organization: Geneva, Switzerland, 2022; pp. 1–74. [Google Scholar]
- Gundy, P.M.; Gerba, C.P.; Pepper, I.L. Survival of Coronaviruses in Water and Wastewater. Food Environ. Virol. 2009, 1, 10–14. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Casanova, L.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Survival of Surrogate Coronaviruses in Water. Water Res. 2009, 43, 1893–1898. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation with Biocidal Agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.J.; Walls, A.C.; Wang, Z.; Sauer, M.M.; Li, W.; Tortorici, M.A.; Bosch, B.J.; DiMaio, F.; Veesler, D. Structures of MERS-CoV Spike Glycoprotein in Complex with Sialoside Attachment Receptors. Nat. Struct. Mol. Biol. 2019, 26, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F.; Wan, C.Y. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef]
- Subbarao, K.; Mahanty, S. Respiratory Virus Infections: Understanding COVID-19. Immunity 2020, 52, 905. [Google Scholar] [CrossRef]
- Wortham, J.M.; Lee, J.T.; Althomsons, S.; Latash, J. Characteristics of Persons Who Died With COVID-19—United States, February 12–May 18, 2020. In The COVID-19 Reader; Routledge: London, UK, 2020; p. 13. [Google Scholar]
- da Silva, A.A.M. On the Possibility of Interrupting the Coronavirus (COVID-19) Epidemic Based on the Best Available Scientific Evidence. Rev. Bras. Epidemiol. 2020, 23, e200021. [Google Scholar] [CrossRef]
- Dobrowolski; Zbysław After COVID-19: Reorientation of Crisis Management in Crisis. Entrep. Sustain. Issues 2020, 8, 799–810. [CrossRef]
- Danaei, G.; Harirchi, I.; Sajadi, H.S.; Yahyaei, F.; Majdadeh, R. The Harsh Effects of Sanctions on Iranian Health. Lancet 2019, 394, 468–469. [Google Scholar] [CrossRef] [Green Version]
- Corriere Della Sera: News e Ultime Notizie Oggi Da Italia e Mondo. Available online: https://www.corriere.it/ (accessed on 19 July 2022).
Duration (h) | Type of Surfaces | Infection Dose * |
---|---|---|
3 | Air | 103.5 to 102.7 TCID50 |
72–168 | Plastic | 103.7 to 100.6 TCID50 |
8–120 | Steel | 103.7 to 100.6 TCID50 |
4 | Copper | Not-reported |
24 | Cardboard | Not-reported |
72–96 | Paper | Not-reported |
48–120 | Wood | Not-reported |
96–120 | Glass | Not-reported |
01–48 | Cloth | Not-reported |
No. (%) | ||||
---|---|---|---|---|
Category | Case-Based Surveillance | Supplemental Surveillance | ||
n = 52,166 | n = 10,647 | |||
Age group (years) | ||||
All <65 | 10,626 | −20.4 | 2681 (25.2) | |
<18 | 16 (<0.1) | 5 (<0.1) | ||
18–44 | 1478 | −2.8 | 423 (4.0) | |
45–54 | 2675 | −5.1 | 704 (6.6) | |
55–64 | 6457 (12.4) | 1549 (14.5) | ||
All ≥65 | 41,528 | −79.6 | 7966 (74.8) | |
65–74 | 11,245 | −21.6 | 2463 (23.1) | |
75–84 | 14,148 | −27.1 | 2900 (27.2) | |
≥85 | 16,135 | −30.9 | 2603 (30) | |
Unknown | 12 (<0.1) | 0 (0) | ||
Sex | ||||
Male | 28,899 | −55.4 | 6449 (60.6) | |
Female | 22,798 | −43.7 | 4194 (39.4) | |
Other/Unknown | 469 (0.9) | 4 (<0.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, L.; Mehravaran, A.; Derakhshan, Z.; Gharehchahi, E.; Bontempi, E.; Golaki, M.; Khaksefidi, R.; Motamed-Jahromi, M.; Keshtkar, M.; Mohammadpour, A.; et al. Investigating the Role of Environmental Factors on the Survival, Stability, and Transmission of SARS-CoV-2, and Their Contribution to COVID-19 Outbreak: A Review. Sustainability 2022, 14, 11135. https://doi.org/10.3390/su141811135
Mohammadi L, Mehravaran A, Derakhshan Z, Gharehchahi E, Bontempi E, Golaki M, Khaksefidi R, Motamed-Jahromi M, Keshtkar M, Mohammadpour A, et al. Investigating the Role of Environmental Factors on the Survival, Stability, and Transmission of SARS-CoV-2, and Their Contribution to COVID-19 Outbreak: A Review. Sustainability. 2022; 14(18):11135. https://doi.org/10.3390/su141811135
Chicago/Turabian StyleMohammadi, Leili, Ahmad Mehravaran, Zahra Derakhshan, Ehsan Gharehchahi, Elza Bontempi, Mohammad Golaki, Razieh Khaksefidi, Mohadeseh Motamed-Jahromi, Mahsa Keshtkar, Amin Mohammadpour, and et al. 2022. "Investigating the Role of Environmental Factors on the Survival, Stability, and Transmission of SARS-CoV-2, and Their Contribution to COVID-19 Outbreak: A Review" Sustainability 14, no. 18: 11135. https://doi.org/10.3390/su141811135