# Noise and Spatial Configuration in Biskra, Algeria—A Space Syntax Approach to Understand the Built Environment for Visually Impaired People

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Background of the Studied Case

#### 2.2. Calculating Degree of Spatial Integration with the Space Syntax Method

_{ij}is the shortest distance (least number of direction changes) between two axial lines i and j. The greater the number of direction changes (d

_{ij}) between street axes, the lower the integration value becomes. The global integration factor is an indicator of spatial accessibility [29]. The higher the spatial integration, the higher the spatial inter-accessibility.

^{2}) is high, the neighbourhood is thus easily orientable. Conversely, a low correlation coefficient implies poorly orientable neighbourhoods.

_{jk}(i) is the number of shortest paths between segment j and k containing i, and g

_{jk}is the number of all shortest path between j and k ([38] p. 64). The values of the normalised angular choice (NACH) are calculated as follows:

_{θ}is the angle between any two segments on the shortest route on segment x, and l is the length of the segments. The formula calculates how easy it is to get to a street and how likely one is to pass through a street ([29], p. 66). The use of the metric radius and the segment length contribute to the solution of the edge effect problem from the classic axial analyses with a radius n. The values of the normalised segment integration (NAIN) are calculated as follows:

#### 2.3. The Measurement of the Sound Pressure Level

_{1 min}which is an equivalent continuous sound pressure level A-weighted of one minute. The protocol consists of a series of outdoor measurements taken manually. The sound pressure level meter was placed at a minimum distance of 2 m from all reflective obstacles, and at a height of 1.5 m from the ground [42].

## 3. Results

^{2}values. As a consequence, La Gare (C) is the most intelligible neighbourhood, implying a high level of orientability (Table 3).

#### 3.1. Sound Pressure Level Measurements

#### 3.2. The Relationship between Sound Pressure Level and the Classic Space Syntax Analyses

^{2}= 0.5882. Figure 10 shows images from the noisiest and highest integrated street (left) and the quietest and lowest integrated street of Hai Ferat.

^{2}= 0.1407.

^{2}= 0.0379. Figure 14 shows images of the noisiest and highest integrated and quietest and lowest integrated street of Hai M’cid.

^{2}= 0.24 to R

^{2}= 0.40 for the four selected neighbourhoods. Therefore, streets with many direct connections to their vicinity influence the sound pressure levels in built environments.

#### 3.3. The Correlation between Noise and the Recent Space Syntax Analyses (NACH and NAIN)

^{2}= 0.0363. Conversely, the streets of the neighbourhood of La Gare (C) reveals a strong, positive, and significant correlation relationship with a R

^{2}= 0.6052. The streets of the neighbourhood Hai Ferhat (D) have a correlation between the NACH and the sound pressure level values except for certain segments, with R

^{2}= 0.2924. The neighbourhood ZHUN East has a low correlation between the NACH and the sound pressure level values with a R

^{2}= 0.0581. These results show again that the neighbourhoods with a low degree of spatial intelligibility have low correlations between sound pressure levels and NACH values.

^{2}= 0.2798. The streets of the neighbourhoods of Hai M’cid (A) and Hai Ferhat (D) reveal a positive, and significant correlation relationship with R

^{2}= 0.5129 and a R

^{2}= 0.5124. The streets of the ZHUN East (G) reveal a weak correlation relationship with a R

^{2}= 0.1443.

## 4. Discussion and Conclusions

- -
- Low correlation between the ‘through-movement’ potentials with a high and low metrical radius
- -
- Low correlation between the ‘to-movement potentials’ with a high and low metrical radius
- -
- Low correlations between global axial integration and street connectivity

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Passini, R.; Proulx, G. Wayfinding without vision: An Experiment with Congenitally Totally Blind People. Environ. Behav.
**1988**, 20, 227–252. [Google Scholar] [CrossRef] - Thomas, R. Cheminer l’espace en aveugle—Corps stigmatisé, Corps compétent. Alinéa
**1999**, 9, 9–24. [Google Scholar] - Passini, R. Mobilité et Orientation Spatiales Chez Les Handicapés Visuels; Université de Montréal: Montreal, Canada, 1986. [Google Scholar]
- Passini, R.; Proulx, G.; Rainville, C. The Spatio-Cognitive Abilities of the Visually Impaired Population. Environ. Behav.
**1990**, 22, 91–118. [Google Scholar] [CrossRef] - Thomas, R. L’accesibilité des piétons à l’espace public urbain: Un accomplissement perceptif situé. Espac. Sociétés
**2003**, 113–114, 233. [Google Scholar] [CrossRef] - Passini, R.; Paiement, L.; Rainville, C. Orientation Spatiale des Handicapés Visuels et Information Environnementale; Université de Montréal: Montreal, Canada, 1991. [Google Scholar]
- Baltenneck, N.; Portalier, S.; Chapon, P.-M.; Osiurak, F. Parcourir la ville sans voir: Effet de l’environnement urbain sur la perception et le ressenti des personnes aveugles lors d’un déplacement in situ. L’Année Psychol.
**2012**, 112, 403–433. [Google Scholar] [CrossRef] - Pallasmaa, J. Le Regard Des Sens = The Eyes of the Skin: Architecture and the Senses; Éd. du Linteau: Village Le Perrey, France, 2010. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Yamu, C.; Van Nes, A.; Garau, C. Bill hillier’s legacy: Space syntax—A synopsis of basic concepts, measures, and empirical application. Sustainability
**2021**, 13, 3394. [Google Scholar] [CrossRef] - Van Nes, A.; Yamu, C. Exploring Challenges in Space Syntax Theory Building: The Use of Positivist and Hermeneutic Explanatory Models. Sustainability
**2020**, 12, 7133. [Google Scholar] [CrossRef] - Hillier, B. Space is the Machine: A Configurational Theory of Architecture; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hillier, B. The common language of space: A way of looking at the social, economic and environmental functioning of cities on a common basis. J. Environ. Sci.
**1999**, 11, 344–349. [Google Scholar] - Mahdzar, S.S.S.; Safari, H. Legibility as a result of geometry space: Analyzing and comparing hypothetical model and existing space by space syntax. Life Sci. J.
**2014**, 11, 309–317. [Google Scholar] - Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des.
**1993**, 20, 29–66. [Google Scholar] [CrossRef] [Green Version] - Penn, A.; Hillier, B.; Banister, D.; Xu, J. Configurational modelling of urban movement networks. Environ. Plan. B Plan. Des.
**1998**, 25, 59–84. [Google Scholar] [CrossRef] [Green Version] - Read, S. Space Syntax and the Dutch City. Environ. Plan. B Plan. Des.
**1999**, 26, 251–264. [Google Scholar] [CrossRef] - De Koning, R.E.; Tan, W.; Van Nes, A. Assessing spatial configurations and transport energy usage for planning sustainable communities. Sustainability
**2020**, 12, 8146. [Google Scholar] [CrossRef] - Chiaradia, A. Emergent Route Choice Behaviour, Motorway and Trunk Road Network: The Nantes conurbation. In Proceedings of the 6th International Space Syntax Symposium, İstanbul, Turkey, 12–15 June 2007. [Google Scholar]
- Chiaradia, A.; Hillier, B.; Barnes, Y.; Schwander, C. Residential property value patterns in London: Space syntax spatial analysis. In Proceedings of the 6th International Space Syntax Symposium, Stockholm, Sweden, 8–11 June 2009. [Google Scholar]
- Penn, A.; Croxford, B. Fingerprinting Urban Kerbside Carbon Monoxide Concentrations: Interaction between street grid configuration, vehicle flows and local wind effects. Int. J. Veh. Des.
**1998**, 20, 60–70. [Google Scholar] [CrossRef] - Croxford, B.; Penn, A.; Hillier, B. Spatial distribution of urban pollution: Civilizing urban traffic. Sci. Total Environ.
**1996**, 189–190, 3–9. [Google Scholar] [CrossRef] - Croxford, B.; Penn, A. Siting considerations for urban pollution monitors. Atmos. Environ.
**1998**, 32, 1049–1057. [Google Scholar] [CrossRef] - Dzhambov, A.M.; Dimitrova, D.D.; Turnovska, T.H. Improving traffic noise simulations using space syntax: Preliminary results from two roadway systems. Arh. Hig. Rada Toksikol.
**2014**, 65, 259–272. [Google Scholar] [CrossRef] [Green Version] - Aman, J.; Rashida, N. Spatial configuration in relation with traffic noise in Dhaka city. AUST J. Sci. Technol.
**2017**, 6, 60–69. [Google Scholar] - Fakhrurrazi, F.; Van Nes, A. Space and panic: The application of space syntax to understand the relationship between mortality rates and spatial configuration in Banda Aceh during the tsunami 2004. In Proceedings of the 8th International Space Syntax Symposium, Santiago, Chile, 3–6 January 2012; Greene, M., Reyes, J., Castro, A., Eds.; PUC: Santiago, Chile, 2012; pp. 1–24. [Google Scholar]
- Jiang, B.; Claramunt, C. Integration of Space Syntax into GIS: New Perspectives for Urban Morphology. Trans. GIS
**2002**, 6, 295–309. [Google Scholar] [CrossRef] - Nes, A.; Van Yamu, C. Introduction to Space Syntax in Urban Studies; Springer Nature, (Forthcoming): Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Hillier, B. Between Social Physics and Phenomenology: Explorations towards an urban synthesis? In Proceedings of the 5th International Space Syntax Symposium, Delft, The Netherlands, 13–17 June 2005; Techne Press: Amsterdam, The Netherlands; pp. 1–21.
- Hillier, B.; Yang, T.; Turner, A. Normalising least angle choice in Depthmap and how it opens new perspectives on the global and local analysis of city space. J. Space Syntax
**2012**, 3, 155–193. [Google Scholar] - Miranda, J.V.; van Nes, A. Sexual Violence in the City: Space, Gender, and the Occurrence of Sexual Violence in Rotterdam. Sustainability
**2020**, 12, 7609. [Google Scholar] [CrossRef] - Van Nes, A. Spatial Configurations and walkability potentials. Measuring urban compactness with Space Syntax. Sustainability
**2021**, 13, 5785. [Google Scholar] [CrossRef] - Van Nes, A. The impact of the ring road on the location pattern of shops in town and city centres. A space syntax approach. Sustainability
**2021**, 13, 3927. [Google Scholar] [CrossRef] - Belir, O.; Onder, D.E. Accessibility in public spaces: Spatial legibility for visually impaired people. In Proceedings of the 9th International Space Syntax, Seoul, Korea, 31 October–3 November 2013. [Google Scholar]
- Agli, N. Intervention Sur le Centre ville De Biskra; Ecole d’architecture Paris-Villemin: Paris, France, 1988. [Google Scholar]
- Farhi, A. Biskra: De l’oasis à la ville saharienne (Note). Méditerranée
**2002**, 99, 77–82. [Google Scholar] [CrossRef] - Naidja, A. La Croissance Urbaine, et Son Influence Sur la Continuité, et la Discontinuité Typomorphologique: Cas Des Tissus Urbains de la Ville de Biskra. Master’s Thesis, Mohamed Khider University, Biskra, Algeria, May 2014. [Google Scholar]
- Rashid, M. The Geometry of Urban Layouts; Springer international publishing: Cham, Switserland, 2017. [Google Scholar]
- Sémidor, C.; Torgue, H.; Beaumont, J. Astuce: (Ambiances Sonores, Transports Urbains, Coeur de Ville et Environnement). Vers l’élaboration d’un guide méthodologique à partir d’étude de cas 2010, 105. Available online: https://memsic.ccsd.cnrs.fr/CRESSON/halshs-00685522v1 (accessed on 18 January 2020).
- Bouzir, T.A.K.; Zemmouri, N.; Berkouk, D. Assessment of noise pollution in the City of Biskra, Algeria. World Acad. Sci. Eng. Technol. Int. J. Environ. Ecol. Eng.
**2017**, 11, 1052–1055. [Google Scholar] - De Souza, T.B.; Alberto, K.C.; Barbosa, S.A. Evaluation of noise pollution related to human perception in a university campus in Brazil. Appl. Acoust.
**2020**, 157, 107023. [Google Scholar] [CrossRef] - AFNOR. NF S31-010: Acoustique—Caractérisation et Mesurage des Bruits de L’environnement—Méthodes Particulières de Mesurage; AFNOR: La Plaine Saint-Denis, France, 1996. [Google Scholar]
- Thomas, L.; Birgitta, B.; John, B.; en Gerd, J. Guidelines for Community Noise. World Health Organization. 1995. Available online: https://www.who.int/docstore/peh/noise/Comnoise-1.pdf (accessed on 23 April 2020).

**Figure 1.**Map of the town of Biskra in 2021 with the four chosen study areas. (

**a**) Map of the town of Biskra in 1863. Red circles: the habitat of the seven villages from the pre-colonial era. Blue square: the colonial city. Source: Cadastral section of Biskra (military engineering card). (

**b**) Map of the town of Biskra in 1972. Source: PUD 1974 by Biskra (CADAT); (

**c**) the location of the ZHUN East and west relative to the city of Biskra. Source: ZHUN study 1984 [36].

**Figure 3.**Global axial integration analysis of Biskra with the various types of neighbourhoods presented in letters.

**Figure 4.**Connectivity analysis of Biskra with the various types of neighbourhoods presented in letters.

**Figure 6.**The sound pressure level from 10:00 p.m. to 12:00 p.m. measured in (

**a**) Hai M’cid (A), (

**b**) La Gare (C), (

**c**) Hai Ferhat (D), and (

**d**) ZHUN East (G).

**Figure 7.**(

**a**) Comparison map of sound level and global integration, and (

**b**) the correlation between sound level and global integration values of La Gare (C) axial lines.

**Figure 9.**(

**a**) Comparison map of sound level and the global integration, and (

**b**) the correlation between sound level and global integration values of Hai Ferhat (D) axial lines.

**Figure 11.**(

**a**) Comparison map of sound level and the global integration, and (

**b**) the correlation between sound level and global integration values of ZHUN East (G) axial lines.

**Figure 13.**(

**a**) Comparison map of sound level and global integration, and (

**b**) the correlation between sound level and global integration values of the axial lines in Hai M’cid (A).

**Figure 15.**The correlation between sound pressure level and connectivity of (

**a**) Hai M’cid (A), (

**b**) La Gare (C), (

**c**) Hai Ferhat (D), and (

**d**) ZHUN East (G).

**Figure 17.**The correlation between the sound pressure level and NACH values of (

**a**) Hai M’cid (A), (

**b**) La Gare (C), (

**c**) Hai Ferhat (D), and (

**d**) ZHUN East (G) segment.

**Figure 19.**The correlation between the sound pressure level and NAIN values of (

**a**) Hai M’cid (A), (

**b**) La Gare (C), (

**c**) Hai Ferhat (D), and (

**d**) ZHUN East (G) segment.

Type N° | Neighbourhood Name | Number of Measuring Points | Date | Period |
---|---|---|---|---|

A | Old Biskra (Hai M’cid) | 24 | Weekend of 01/17/2020 | 10 a.m. to 12 p.m. |

C | Colonial (La Gare) | 44 | Weekend of 01/10/2020 | 10 a.m. to 12 p.m. |

D | Unplanned (Hai Ferhat) | 43 | Weekend of 01/11/2020 | 10 a.m. to 12 p.m. |

G | Planned Extension (ZHUN East) | 43 | Holiday of 01/12/2020 | 10 a.m. to 12 p.m. |

**Table 2.**Global integration and connectivity values of the different urban neighbourhoods of Biskra.

Type N° | Neighbourhood Type | Neighbourhood Name | Global Integration | Connectivity | ||||
---|---|---|---|---|---|---|---|---|

Max | Min | Average | Max | Min | Average | |||

A | Old Biskra (Turkish) | Hai M’cid | 1.308 | 0.528 | 0.909 | 08 | 01 | 3.529 |

B | Planned (Colonial) | City Center | 1.688 | 1.135 | 1.403 | 81 | 02 | 23.463 |

C | Planned (Colonial) | The station (La Gare) | 1.688 | 1.245 | 1.454 | 87 | 07 | 41.889 |

D | unplanned (post-independence) | Hai Ferhat | 1.692 | 1.262 | 1.448 | 93 | 02 | 20.778 |

E | Planned Extend (post-independence) | ZHUN West (Subdivision) | 1.105 | 0.881 | 1.040 | 52 | 01 | 18.185 |

F | Planned Extend (post-independence) | ZHUN West (Housing) | 0.934 | 0.790 | 0.884 | 89 | 02 | 22.636 |

G | Planned Extend (post-independence) | ZHUN East (Subdivision & Housing) | 1.380 | 0.853 | 1.022 | 88 | 03 | 33.713 |

H | Unplanned Extend | Alia North | 0.859 | 0.641 | 0.729 | 26 | 02 | 10.525 |

I | Old Biskra (Turkish) | Feliche | 0.629 | 0.257 | 0.401 | 03 | 01 | 02.111 |

**Table 3.**Global integration, connectivity and intelligibility (R²) of the four selected neighbourhoods in Biskra.

N° | Neighbourhood Type | Neighbourhood Name | Global Integration | Connectivity | Intelligibility (R²) | |
---|---|---|---|---|---|---|

Relative values to the entire Biskra city | Avg | 1.082 | 33.383 | 0.024 | ||

Min | 0.257 | 01 | ||||

Max | 1.692 | 202 | ||||

A | Old Biskra (Turkish) | Hai M’cid | Avg | 0.909 | 3.529 | 0.365 |

Min | 0.528 | 01 | ||||

Max | 1.308 | 08 | ||||

C | Planned (Colonial) | La Gare | Avg | 1.454 | 41.889 | 0.541 |

Min | 1.245 | 07 | ||||

Max | 1.688 | 87 | ||||

D | Unplanned (post-independence) | Hai Ferhat | Avg | 1.448 | 20.778 | 0.540 |

Min | 1.262 | 02 | ||||

Max | 1.692 | 93 | ||||

G | Planned Extension (post-independence) | ZHUN East | Avg | 1.022 | 33.713 | 0.330 |

Min | 0.853 | 03 | ||||

Max | 1.380 | 88 |

N° | Neighbourhood Name | LAeq (1 min) (dB) | ||
---|---|---|---|---|

Max | Min | Average | ||

A | Old Biskra (Hai M’cid) | 69.3 | 41.0 | 54.7 |

C | Colonial (La Gare) | 72.8 | 44.5 | 61.7 |

D | unplanned (Hai Ferhat) | 73.5 | 46.8 | 61.2 |

G | Planned (ZHUN East) | 72.8 | 46.1 | 62.8 |

**Table 5.**Comparison correlation between sound level and global integration, Connectivity, NACH and NAIN segment values of the selected neighbourhoods.

N° | Level | Correlation (R) between Sound Level and | |||||
---|---|---|---|---|---|---|---|

Accessibility | Intelligibility | Noise | Integration [HH] | Connectivity | NACH | NAIN | |

A | Low | Low | Low | 0.19 | 0.57 | 0.19 | 0.53 |

C | High | High | High | 0.83 | 0.54 | 0.78 | 0.72 |

D | High | High | High | 0.77 | 0.64 | 0.54 | 0.72 |

G | Average | Average | High | 0.26 | 0.50 | 0.24 | 0.38 |

**Table 6.**Comparison of correlation between sound level and the correlation coefficient between the spatial analyses with high and low radius correlated with sound pressure.

Correlation R^{2} of NAIN and NAIN R = Low | Correlation R^{2} of NACH and NACH R = Low | Correlation R^{2} of Connectivity and Global Int | |
---|---|---|---|

A Old Biskra (Hai M’cid) | 0.511 | 0.81 | 0.365 |

C Colonial (La Gare) | 0.740 | 0.760 | 0.541 |

D Unplanned (Hai Ferat) | 0.739 | 0.833 | 0.540 |

G Planned (ZHUN East) | 0.094 | 0.091 | 0.330 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Djenaihi, W.-M.; Zemmouri, N.; Djenane, M.; van Nes, A.
Noise and Spatial Configuration in Biskra, Algeria—A Space Syntax Approach to Understand the Built Environment for Visually Impaired People. *Sustainability* **2021**, *13*, 11009.
https://doi.org/10.3390/su131911009

**AMA Style**

Djenaihi W-M, Zemmouri N, Djenane M, van Nes A.
Noise and Spatial Configuration in Biskra, Algeria—A Space Syntax Approach to Understand the Built Environment for Visually Impaired People. *Sustainability*. 2021; 13(19):11009.
https://doi.org/10.3390/su131911009

**Chicago/Turabian Style**

Djenaihi, Walid-Mahfoud, Noureddine Zemmouri, Moussadek Djenane, and Akkelies van Nes.
2021. "Noise and Spatial Configuration in Biskra, Algeria—A Space Syntax Approach to Understand the Built Environment for Visually Impaired People" *Sustainability* 13, no. 19: 11009.
https://doi.org/10.3390/su131911009