Dynamic Simulation of Integrated Cleaner Production Strategies towards High Quality Development in a Heavily Air-Polluted City in China
Abstract
:1. Introduction
2. Methodology
2.1. Modeling Framework
2.2. Economic and Social Model
2.3. Cleaner Production Incentive Approaches
2.4. Assumptions and Scenarios
2.5. Sensitivity Analysis
3. Simulation Results Analysis
3.1. Economic Development Recovery
3.2. Environmental Emissions Control
3.3. Improving Heavy Industry Capacity without Environmental Deterioration
3.4. Optimal Technologies Selection
3.5. Intensified Decoupling Effect
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryan, N.; Miller, S.; Skerlos, S.; Cooper, D. Reducing CO2 emissions from U.S. steel consumption by 70% by 2050. Environ. Sci. Technol. 2020, 54, 14598–14608. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook 2020; China Statistics Press: Beijing, China, 2020.
- Wu, P.; Low, S.P.; Xia, B.; Zuo, J. Achieving transparency in carbon labelling for construction materials-Lessons from current assessment standards and carbon labels. Environ. Sci. Policy 2014, 44, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Statistical Bulletin of the National Economic and Social Development of Tangshan City. 2019. Available online: http://www.tsxxg.com/thread-457204-1-1.html (accessed on 2 April 2020).
- World Steel Association Homepage. Available online: https://www.worldsteel.org/zh/ (accessed on 16 August 2019).
- The Ministry of Ecology and Environment Reported the State of Surface Water and Air Quality in China in September and January–September. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202010/t20201020_803893.html (accessed on 20 October 2020).
- World Input-Output Database Homepage. Available online: http://www.wiod.org/database/eas13 (accessed on 16 August 2019).
- Notice on Supporting the Construction of The First Batch of Industrial Transformation and Upgrading Demonstration Zones in Old Industrial Cities and Resource-Based Cities. Available online: http://www.gov.cn/xinwen/201704/21/5188011/files/8ebf28a6bfcd49d783dd66c2952ea688.pdf (accessed on 21 April 2017).
- Shi, L.; Liu, J.; Wang, Y.; Chiu, A. Cleaner production progress in developing and transition countries. J. Clean. Prod. 2021, 278, 123763. [Google Scholar] [CrossRef]
- Sustainable Consumption & Production Branch: Resource Efficient and Cleaner Production. Available online: http://www.unep.fr/scp/cp/ (accessed on 2 September 2016).
- Loiseau, E.; Saikku, L.; Antikainen, R.; Droste, N.; Hansjürgens, B.; Pitkänen, K.; Leskinen, P.; Kuikman, P.; Thomsen, M. Green economy and related concepts: An overview. J. Clean. Prod. 2016, 139, 361–371. [Google Scholar] [CrossRef]
- Wu, R.; Dai, H.; Geng, Y.; Xie, Y.; Masui, T.; Liu, Z.; Qian, Y. Economic Impacts from PM2.5 Pollution-Related Health Effects: A Case Study in Shanghai. Environ. Sci. Technol. 2017, 51, 5035–5042. [Google Scholar] [CrossRef] [PubMed]
- Almer, C.; Winkler, R. Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol. J. Environ. Econ. Manag. 2017, 82, 125–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- Von Der Assen, N.; Müller, L.J.; Steingrube, A.; Voll, P.; Bardow, A. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves. Environ. Sci. Technol. 2016, 50, 1093–1101. [Google Scholar] [CrossRef]
- Yong, J.Y.; Klemeš, J.J.; Varbanov, P.S.; Huisingh, D. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. J. Clean. Prod. 2016, 111, 1–16. [Google Scholar] [CrossRef]
- Zheng, S.; Yi, H.; Li, H. The impacts of provincial energy and environmental policies on air pollution control in China. Renew. Sustain. Energy Rev. 2015, 49, 386–394. [Google Scholar] [CrossRef]
- Song, L.; Wang, P.; Xiang, K.; Chen, W.Q. Regional disparities in decoupling economic growth and steel stocks: Forty years of provincial evidence in China. J. Environ. Manag. 2020, 271, 111035. [Google Scholar] [CrossRef]
- Qi, C.; Wang, Q.; Ma, X.; Ye, L.; Yang, D.; Hong, J. Inventory, environmental impact, and economic burden of GHG emission at the city level: Case study of Jinan, China. J. Clean. Prod. 2018, 192, 236–243. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Zhang, W.; Hubacek, K.; Bi, F.; Zuo, J.; Jiang, H.; Zhang, Z.; Feng, K.; Liu, Y.; et al. Provincial air pollution responsibility and environmental tax of China based on interregional linkage indicators. J. Clean. Prod. 2019, 235, 337–347. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Yang, H.; Meng, J.; Wang, X.; Ma, J.; Tao, S. Impacts of Potential China’s Environmental Protection Tax Reforms on Provincial Air Pollution Emissions and Economy. Earth’s Futur. 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.; Hubacek, K.; Liu, Y.; Wang, J.; Feng, K.; Jiang, L.; Jiang, H.; Zhang, B.; Bi, J. Unequal Exchange of Air Pollution and Economic Benefits Embodied in China’s Exports. Environ. Sci. Technol. 2018, 52, 3888–3898. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Zhao, H.; Lu, X.; Zhang, Y.; Zhu, W.; Nielsen, C.P.; Li, X.; Zhang, Q.; Bi, J.; et al. Trade-driven relocation of air pollution and health impacts in China. Nat. Commun. 2017, 8, 738. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, B.; Fang, K.; Yang, W. Unraveling economic and environmental implications of cutting overcapacity of industries: A city-level empirical simulation with input-output approach. J. Clean. Prod. 2019, 222, 722–732. [Google Scholar] [CrossRef]
- Sun, X.; Li, W.; Xie, Y.; Huang, G.; Dong, C.; Yin, J. An optimization model for regional air pollutants mitigation based on the economic structure adjustment and multiple measures: A case study in Urumqi city, China. J. Environ. Manag. 2016, 182, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, M.; Wang, L.; Wang, H.; Zeng, M.; Zeng, B.; Qiu, F.; Sun, C. Can remotely delivered electricity really alleviate smog? An assessment of China’s use of ultra-high voltage transmission for air pollution prevention and control. J. Clean. Prod. 2020, 242, 118430. [Google Scholar] [CrossRef]
- Wu, D.; Ma, X.; Zhang, S. Integrating synergistic effects of air pollution control technologies: More cost-effective approach in the coal-fired sector in China. J. Clean. Prod. 2018, 199, 1035–1042. [Google Scholar] [CrossRef]
- Gao, C.K.; Na, H.M.; Song, K.; Tian, F.; Strawa, N.; Du, T. Technologies-based potential analysis on saving energy and water of China’s iron and steel industry. Sci. Total Environ. 2020, 699, 134225. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cui, F.; Xiang, N. Roadmap of green transformation for a steel-manufacturing intensive city in China driven by air pollution control. J. Clean. Prod. 2021, 283, 124643. [Google Scholar] [CrossRef]
- Gautam, S.; Patra, A.K.; Kumar, P. Status and chemical characteristics of ambient PM2.5 pollutions in China: A review. Environ. Dev. Sustain. 2019, 21, 1649–1674. [Google Scholar] [CrossRef]
- Gautam, S.; Yadav, A.; Tsai, C.J.; Kumar, P. A review on recent progress in observations, sources, classification and regulations of PM2.5 in Asian environments. Environ. Sci. Pollut. Res. 2016, 23, 21165–21175. [Google Scholar] [CrossRef]
- Bai, C.; Chen, Y.; Yi, X.; Feng, C. Decoupling and decomposition analysis of transportation carbon emissions at the provincial level in China: Perspective from the 11th and 12th Five-Year Plan periods. Environ. Sci. Pollut. Res. 2019, 26, 15039–15056. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Ding, L.; Yang, S.; Wu, A. Socioeconomic factors of industrial air pollutants in Zhejiang Province, China: Decoupling and Decomposition analysis. Environ. Sci. Pollut. Res. 2020, 27, 28247–28266. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Shao, Q.; Wei, Y. Factor decomposition and decoupling analysis of air pollutant emissions in China’s iron and steel industry. Environ. Sci. Pollut. Res. 2020, 27, 15267–15277. [Google Scholar] [CrossRef]
- Ouyang, X.; Shao, Q.; Zhu, X.; He, Q.; Xiang, C.; Wei, G. Environmental regulation, economic growth and air pollution: Panel threshold analysis for OECD countries. Sci. Total Environ. 2019, 657, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, X.; Shi, M.; Hewings, G.J.D. Does China’s air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model. Energy Policy 2019, 127, 213–227. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Sun, Y.; Zhang, L.; Qiao, Z.; Zhang, Z.; Zheng, H.; Meng, J.; Lu, Y.; Li, Y. Linkage analysis of economic consumption, pollutant emissions and concentrations based on a city-level multi-regional input–output (MRIO) model and atmospheric transport. J. Environ. Manag. 2020, 270, 110819. [Google Scholar] [CrossRef]
- Cansino, J.M.; Román, R.; Rueda-Cantuche, J.M. Will China comply with its 2020 carbon intensity commitment? Environ. Sci. Policy 2015, 47, 108–117. [Google Scholar] [CrossRef]
- Cai, Y.; Applegate, S.; Yue, W.; Cai, J.; Wang, X.; Liu, G.; Li, C. A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing’s taxi fleet. Energy Policy 2017, 100, 314–325. [Google Scholar] [CrossRef]
- Gilardino, A.; Rojas, J.; Mattos, H.; Larrea-Gallegos, G.; Vázquez-Rowe, I. Combining operational research and Life Cycle Assessment to optimize municipal solid waste collection in a district in Lima (Peru). J. Clean. Prod. 2017, 156, 589–603. [Google Scholar] [CrossRef]
- Technology and Innovation Report 2018: Harnessing Frontier Technologies for Sustainable Development; United Nations Publication: Geneva, Switzerland, 2018.
- Guo, R.; Lv, S.; Liao, T.; Xi, F.; Zhang, J.; Zuo, X.; Cao, X.; Feng, Z.; Zhang, Y. Classifying green technologies for sustainable innovation and investment. Resour. Conserv. Recycl. 2020, 153, 104580. [Google Scholar] [CrossRef]
- Bryan, T. China’s air pollution crisis: Science and policy perspectives. Environ. Sci. Policy 2019, 92, 275–280. [Google Scholar]
- Xu, F.; Xiang, N.; Tian, J.; Chen, L. 3Es-based optimization simulation approach to support the development of an eco-industrial park with planning towards sustainability: A case study in Wuhu, China. J. Clean. Prod. 2017, 164, 476–484. [Google Scholar] [CrossRef]
- Ma, Y.; Yan, J.; Sha, J.; He, G.; Song, C.; Fan, S.; Ke, W. Dynamic simulation of the atmospheric environment improved by a focus on clean energy utilization of resource-based cities in China. J. Clean. Prod. 2018, 192, 396–410. [Google Scholar] [CrossRef]
- Chuah, L.F.; Klemeš, J.J.; Yusup, S.; Bokhari, A.; Akbar, M.M. A review of cleaner intensification technologies in biodiesel production. J. Clean. Prod. 2017, 146, 181–193. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Xu, L.; Tong, Y.; Jia, X.; Tian, H. Water-energy-carbon nexus assessment of China’s iron and steel industry: Case study from plant level. J. Clean. Prod. 2020, 253, 119910. [Google Scholar] [CrossRef]
- Geng, Z.; Chen, Q.; Xia, Q.; Kirschen, D.S.; Kang, C. Environmental Generation Scheduling Considering Air Pollution Control Technologies and Weather Effects. IEEE Trans. Power Syst. 2017, 32, 127–136. [Google Scholar] [CrossRef]
- Tangshan Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2018. (In Chinese)
- Accounting Standards for Enterprises-Basic Standards. Available online: http://kjs.mof.gov.cn/zt/kjzzss/kuaijizhunzeshishi/200806/t20080618_46213.html (accessed on 18 June 2008).
- Mei, X.; Bai, J.; Chen, S.; Zhou, M.; Jiang, P.; Zhou, C.; Fang, F.; Zhang, Y.; Li, J.; Long, M.; et al. Efficient SO2 Removal and Highly Synergistic H2O2 Production Based on a Novel Dual-Function Photoelectrocatalytic System. Environ. Sci. Technol. 2020, 54, 11515–11525. [Google Scholar] [CrossRef]
- Liu, W.; Wu, B.; Bai, X.; Liu, S.; Liu, X.; Hao, Y.; Liang, W.; Lin, S.; Liu, H.; Luo, L.; et al. Migration and Emission Characteristics of Ammonia/Ammonium through Flue Gas Cleaning Devices in Coal-Fired Power Plants of China. Environ. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Hebei Environmental Protection Industry Association on the Release of “Hebei Province to Encourage Environmental Protection Technology, Product Catalogue (the First Batch) Letter. Available online: http://www.hb12369.net/201501/t20150123_45461.htmlhd/kjbz/kjdt/ (accessed on 23 January 2015).
- Hebei Environmental Protection Industry Association on the Release of Hebei Province to Encourage Environmental Protection Technology, Product Catalogue (the Second Batch) Letter. Available online: http://www.hb12369.net/201601/t20160120_49376.html (accessed on 20 January 2016).
- Publicity on the Energy Saving Technologies and Updated Energy Saving Technologies to be Included in the National Key Energy Saving and Low-Carbon Technology Promotion Catalogue. Available online: https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/201512/W020190910595799295318.pdf (accessed on 10 September 2019).
- China Statistical Yearbook on Environment 2017; China Statistics Press: Beijing, China, 2018. (In Chinese)
- Ambient Air Quality Stand Ards. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf (accessed on 10 April 2012).
- Tong, D.; Geng, G.; Jiang, K.; Cheng, J.; Zheng, Y.; Hong, C.; Yan, L.; Zhang, Y.; Chen, X.; Bo, Y.; et al. Energy and emission pathways towards PM2.5 air quality attainment in the Beijing-Tianjin-Hebei region by 2030. Sci. Total Environ. 2019, 692, 361–370. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, L.; Chen, D.; Jia, Y.; Chen, D.; Zhou, Y.; Cheng, S. Prediction of reduction potential of pollutant emissions under the coal cap policy in BTH region, China. J. Environ. Manag. 2018, 225, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Indicators to Measure Decoupling of Environment Pressure from Economic Growth. Available online: http://www.oecd.org/environment/indicators-modelling-outlooks/1933638.pdf (accessed on 20 November 2019).
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Tapio, P.; Banister, D.; Luukkanen, J.; Vehmas, J.; Willamo, R. Energy and transport in comparison: Immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000. Energy Policy 2007, 35, 433–451. [Google Scholar] [CrossRef]
- Xia, Y.; Zhong, M. Relationship between decoupling theory of Economic Development and Environmental pollution and EKC Hypothesis-Also on Decoupling Division of Chinese prefecture-Level Cities. China Popul. Resour. Environ. 2016, 26, 8–16. (In Chinese) [Google Scholar]
- Yang, X.; Teng, F. The air quality co-benefit of coal control strategy in China. Resour. Conserv. Recycl. 2018, 129, 373–382. [Google Scholar] [CrossRef]
Scenario | Industrial Restructuring | Environmental Efficiency Increase | Advanced Technology |
---|---|---|---|
Business as Usual Scenario (BAU) | √ | × | × |
Environmental Efficiency | |||
Improvement Scenario (EFF) | √ | √ | × |
Technology Scenario (TEC) | √ | × | √ |
Cleaner Production Scenario (CLP) | √ | √ | √ |
Year | Simulated (Billion CNY) | Observed (Billion CNY) | Error (%) | |
---|---|---|---|---|
GDP | 2017 | 665.2 | 653.0 | 1.87 |
2018 | 695.3 | 695.5 | 0.02 | |
2019 | 673.2 | 689.0 | 2.29 | |
Output of steel industry | 2017 | 519.22 | 526.97 | 1.22 |
2018 | 549.29 | 577.38 | 3.85 | |
The value-added of tertiary industry | 2017 | 236.38 | 228.3 | 3.54 |
2018 | 252.45 | 248.7 | 1.52 | |
2019 | 269.62 | 274.55 | 1.8 | |
Output value proportion of primary industry, secondary industry, and tertiary industry | 2017 | 0.09:0.55:0.36 | 0.08:0.53:0.39 | 1.86 |
2018 | 0.09:0.54:0.37 | 0.08:0.53:0.39 | 1.93 | |
2019 | 0.09:0.51:0.40 | 0.08:0.52:0.40 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Xiang, N.; Zhang, Y.; Li, X.; Liang, G. Dynamic Simulation of Integrated Cleaner Production Strategies towards High Quality Development in a Heavily Air-Polluted City in China. Sustainability 2021, 13, 8951. https://doi.org/10.3390/su13168951
Shao J, Xiang N, Zhang Y, Li X, Liang G. Dynamic Simulation of Integrated Cleaner Production Strategies towards High Quality Development in a Heavily Air-Polluted City in China. Sustainability. 2021; 13(16):8951. https://doi.org/10.3390/su13168951
Chicago/Turabian StyleShao, Jing, Nan Xiang, Yutong Zhang, Xiang Li, and Guihua Liang. 2021. "Dynamic Simulation of Integrated Cleaner Production Strategies towards High Quality Development in a Heavily Air-Polluted City in China" Sustainability 13, no. 16: 8951. https://doi.org/10.3390/su13168951
APA StyleShao, J., Xiang, N., Zhang, Y., Li, X., & Liang, G. (2021). Dynamic Simulation of Integrated Cleaner Production Strategies towards High Quality Development in a Heavily Air-Polluted City in China. Sustainability, 13(16), 8951. https://doi.org/10.3390/su13168951