Circular Economy Strategies: Use of Corn Waste to Develop Biomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Case
2.2. Development Methodology
- -
- The drying process in the original elaboration is generated for twelve hours in an oven at 80 degrees Celsius, while in the current process, it is left for 12 h at room temperature on absorbent material to minimize the internal humidity of the raw material [35].
- -
- After cooking, the material is left to rest for 4 days with the liquor that it distills; for the current process, it is left for 4 h, simplifying production times. The decrease in time is based on research and the course directed by the Architect Cárdenas Oleas, in which it is indicated that when cooking the raw material with a chemical that allows breaking the lignin, no more than two to four hours of rest is needed to continue the craft paper manufacturing process [35].
- -
- The bleaching process of paper-making is eliminated. This is because the amount of water in addition to the incorporation of hydrogen peroxide generates a high percentage of waste whose disposal is highly complex due to the contamination generated by combining water with peroxide [36].
2.3. Test Tube Fabrication
- -
- Reception:
- -
- Preparation:
- -
- Transformation:
3. Results
3.1. Principal Characteristics
- Whiteness:
- Brightness:
- Opacity:
3.2. Applicability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chavarro, D.; Vélez, M.I.; Tovar, G.; Montenegro, I.; Hernández, A.; Olaya, A. Los Objetivos de Desarrollo Sostenible en Colombia y el aporte de la ciencia, la tecnología y la innovación. Colcienc. Subdirección Gen. Unidad Diseño Y Evaluación Políticas 2017, 2, 100–117. [Google Scholar]
- Luth, J.; Mccormick, K.; Richter, J.L.; Pantzar, M. Greening the Economy Compendium; Lund University: Lund, Sweden, 2016. [Google Scholar]
- Wever, R.; van Kuijk, J.; Boks, C. User-centred design for sustainable behaviour. Int. J. Sustain. Eng. 2008, 1, 9–20. [Google Scholar] [CrossRef]
- Gómez, P.J.E. Economía ambiental, una retrospectiva teórica. Apunt. Contab. 2003. Available online: https://revistas.uexternado.edu.co/index.php/contad/article/view/1308/1245 (accessed on 26 July 2021).
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Camara de Comercio de Valencia. Cuaderno de Comercio y Sostenibilidad: Economía Circular; Cámara de Comercio de Valencia: Valencia, España, 2020; p. 30. [Google Scholar]
- Gupta, S.; Dangayach, G.S.; Singh, A.K. Key determinants of sustainable product design and manufacturing. Procedia CIRP 2015, 26, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Dantas, T.E.T.; de-Souza, E.D.; Destro, I.R.; Hammes, G.C.; Rodriguez, M.T.; Soares, S.R. How the combination of Circular Economy and Industry 4.0 can contribute towards achieving the Sustainable Development Goals. Sustain. Prod. Consum. 2021, 26, 213–227. [Google Scholar] [CrossRef]
- Bulkeley, H.; Mccormick, K. Sustainability through Urban Living Labs; Lund University: Lund, Sweden, 2018. [Google Scholar]
- Balaceanu, C.D.; Tilea, M.; Penu, D. Perspectives on Eco Economics. Circular Economy and Smart Economy. Acad. J. Econ. Stud. 2017, 3, 105–109. [Google Scholar]
- McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Antoine, C.; Aránguiz, S.; Montt, C. Formación para el Diseño Social. Percepciones y expectativas entre los estudiantes de la Facultad de Diseño de la Universidad del Pacífico, Chile. Cuad. del Cent. Estud. Diseño y Comun. 2019. [Google Scholar] [CrossRef]
- CEGESTI. Manual Para la Implementación de Ecodiseños; Universidad Tecnológica de Delft: San José, Costa Rica, 1999. [Google Scholar]
- Aparicio-Peralta, C.C.; Halabi-Echeverry, A.X.; Puentes-Parodi, A. Sustainable requirements and value proposition for milk Ultra-high temperature (UHT) packaging. Supply Chain Forum An Int. J. 2020, 21, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Casarejos, F.; Bastos, C.R.; Rufin, C.; Frota, M.N. Rethinking packaging production and consumption vis-à-vis circular economy: A case study of compostable cassava starch-based material. J. Clean. Prod. 2018, 201, 1019–1028. [Google Scholar] [CrossRef]
- Sanchis Gisbert, R. Ecodiseño en el Desarrollo de Productos; Universidad Politécnica de Valencia: Valencia, España, 2020. [Google Scholar]
- Ford, A.; Moodie, C.; Hastings, G. The role of packaging for consumer products: Understanding the move towards ‘plain’ tobacco packaging. Addict. Res. Theory 2012, 20, 339–347. [Google Scholar] [CrossRef]
- Bozzola, M.; Dal Palù, D.; De Giorgi, C. Design for Leftovers. From Food Waste to Social Responsibility. Des. J. 2017, 20 (Suppl. 1), S1692–S1704. [Google Scholar] [CrossRef]
- Rees, W.; Tremma, O.; Manning, L. Sustainability cues on packaging: The influence of recognition on purchasing behavior. J. Clean. Prod. 2019, 235, 841–853. [Google Scholar] [CrossRef]
- Gaviria, L.J.; Osorio, E.Y.R.; Antioquia, I.U.C.M. Aprovechamiento Gastronómico De Frutas En Sobrecosecha De La Plaza Minorista José María, Medellín (Colombia); Revista de Turismo, Patrimonio y Desarrollo: Medellín, Colombia, 2019. [Google Scholar]
- Ortas, L. El cultivo del Maíz: Fisiología y Aspectos Generales; AGRIGAN S.A.: Huesca, Spain, 2008; Volume 4, pp. 15–20. [Google Scholar]
- Restrepo, S.; Arroyave, G.; Vásquez, D. Uso de fibras vegetales en materiales compuestos de matriz polimérica: Una revisión con miras a su aplicación en el diseño de nuevos productos Use of vegetable fibers in polymer matrix composites: A review. SENA Cent. Nac. Asist. Técnica a la Ind. 2016, 80, 77–86. [Google Scholar]
- Minaya Luna, C.J.; Galarreta Oliveros, G.I.; Símpalo López, W.D.; Bonifacio Maza, N.A.; Miñan Olivos, G.S. Elaboración de papel biodegradable a partir de hojas de maíz blanco (Zea mays L.). YACHAQ 2018, 1. [Google Scholar] [CrossRef]
- Andy Huatatoca, L.S. Elaboración de Papel Artesanal a Base de los Residuos Vegetales de los Tallos de Maíz (Zea Mays l) y Cáscara de Plátano (Musa Paradisiaca l) Utilizando los Métodos Químicos de Jayme-Wise, Kurshner y Hoffner; Universidad Nacional de Chimborazo: Riobamba, Ecuador, 2020; p. 57. [Google Scholar]
- Aarnio, T.; Hämäläinen, A. Challenges in packaging waste management in the fast food industry. Resour. Conserv. Recycl. 2008, 52, 612–621. [Google Scholar] [CrossRef]
- Morera, V. Fabricación del Papel con Materias Primas Nacionales; Universidad de Buenos Aires: Buenos Aires, Argentina, 2019. [Google Scholar]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, A.V. Obtención de un Polímero Biodegradable a Partir de Almidón de Maíz Obtención de un Polímero Biodegradable a; Escuela de Ingeniería Química ITCA: Santa Tecla, El Salvador, 2015. [Google Scholar]
- Navarro, M.V.F.; Martínez, J.R. Diseño sostenible: Herramienta estratégica de innovación. Rev. Legis. Estud. Soc. y Opinión Pública 2011, 4, 47–88. [Google Scholar]
- Prado-Martínez, M.; Anzaldo-Hernández, J.; Becerra-Aguilar, B.; Palacios-Juárez, H.; de Jesús Vargas-Radillo, J.; Rentería-Urquiza, M. Characterization of maize leaves and of sugarcane bagasse to elaborate of a mixed cellulose pulp. Madera Bosques 2012, 18, 37–51. [Google Scholar]
- Vinodh, S.; Rajanayagam, D. CAD and DFM: Enablers of sustainable product design. Int. J. Sustain. Eng. 2010, 3, 292–298. [Google Scholar] [CrossRef]
- Consejería de Medio Ambiente y Ordenación del Territorio; Guía Didáctica de Educación Ambiental; Fondo Europeo de Desarrollo Regional: Barcelona, España, 2013.
- Castaño Castrillón, H.D.; Suárez, V. Visual analysis of ceramic combinations with educational purposes for the development of artisan products. In Materials Design and Applications II; Springer: Cham, Germany, 2019; Volume 98. [Google Scholar]
- Estrada-Cely, G.E.; Parra-Herrera, J.P. Las implicaciones éticas y bioéticas en la investigación científica. CES Med. Vet. y Zootec. 2016, 11, 115–118. [Google Scholar] [CrossRef]
- Heinrich Boll, S. Manual de BASURA CERO: Una guía para Comunidades; Fronteras Comunes: México D.F., México, 2013; p. 42. [Google Scholar]
- Oleas, P.C. Elaboración de Papel Vegetal Papel Vegetal Recolección de Materia Prima Elaboración del Papel; Universidad de Antioquia: Medellín, Colombia, 2010; pp. 1–4. [Google Scholar]
- Feijoo, G.; Moreira, M.T. Análisis de ciclo de vida y huella de carbono: Casos prácticos. Res. Gate 2020. [Google Scholar] [CrossRef]
- Ulrich, K.T.; Eppinger, S.D. Diseño y Desarrollo de Productos, Quinta Edi; The McGraw-Hill Companies: New York, NY, USA, 2012. [Google Scholar]
- Herrera, F. ODS en Colombia: Los Retos Para el 2030; Programa de las Naciones Unidas para el Desarrollo: Bogotá, Colombia, 2018. [Google Scholar]
- Villalba, J.; Castillo, C.; Cuervo, A. La pasta de papel como material de creación artística. Arte Individuo y Soc. 2018, 30, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Marcinkowski, A.; Kowalski, A.M. The problem of preparation the food packaging waste for recycling in Poland. Resour. Conserv. Recycl. 2012, 69, 10–16. [Google Scholar] [CrossRef]
- Askeland, D.R.; Phulé, P.P. Ciencia e Ingeniería de los Materiales; Cengage Learning Editores S.A.: México D.F., México, 2004; Volume 4, p. 1039. [Google Scholar]
- Aliaga, C. Tecnologías para la Producción de Papel a Partir de Residuos Agrícolas y Plantas; Instituto Tecnológico del Embalaje, Transporte y Logística: Barcelona, España, 2010; pp. 5, 7, 10 and 21. [Google Scholar]
- Belmonte Serrano, M.Á. Requisitos éticos en los proyectos de investigación. Otra oveja negra. Semin. la Fund. Esp. Reumatol. 2010, 11, 7–13. [Google Scholar] [CrossRef]
- UNESCO; PNUMA. Manual de Educación Para un Consumo Sostenible; PNUMA-UNESCO: París, Francia, 2019; p. 61. [Google Scholar]
- Cámara de Comercio de Bogotá. Guía Práctica Sistema de Empaque, Envase, Embalaje y Etiquetas; Cámara de Comercio de Bogotá: Bogotá, Colombia, 2019. [Google Scholar]
- Pane, D.N.; Fikri, M.; Ritonga, H.M. Manual de empaque y embalaje para exportación. J. Chem. Inf. Model. 2018, 53, 1689–1699. [Google Scholar]
- Posada, E.; Almanza, J. Materiales de Ingeniería Para la Sostenibilidad Ambiental y Energética; Indisa S.A: Medellín, Colombia, 2015; pp. 1–10. [Google Scholar]
- Caicedo Pardo, O.F. Creación de Valor Sostenible Mediante el Diseño de Modelos de Negocios Innovadores Creación de Valor Sostenible Mediante el Diseño de Modelos de Negocios Innovadores; 2018; p. 101. Available online: https://repositorio.unal.edu.co/handle/unal/68813 (accessed on 26 July 2021).
- del Rosario Bernatene, M.; Canale, G.J. Innovación sustentable en Diseño a partir de la integración del análisis de Ciclo de Vida (ACV) con Cadenas Globales de Valor (CGV). Cuad. del Cent. Estud. Diseño y Comun. 2019, 22, 151–174. [Google Scholar] [CrossRef]
- Londoño Quintero, Y. Propuesta de una Línea de Empaques Biodegradables a Partir de Fibra de Coco y Bambú Laminado; Universidad San Buenaventura: Medellín, Colombia, 2017; Volume 4, pp. 9–15. [Google Scholar]
- Potosí Benavides, C.C.; Muñoz Guachavez, D.A.; Cordoba-Cely, C. diseño de comida como fuente de innovación social. Rev. la Fac. Ciencias Económicas Adm. Univ. Nariño 2020, 1, 84–109. [Google Scholar] [CrossRef]
- Nemat, B.; Razzaghi, M.; Bolton, K.; Rousta, K. The potential of food packaging attributes to influence consumers’ decisions to sort waste. Sustainability 2020, 12, 2234. [Google Scholar] [CrossRef] [Green Version]
- Maleki, S.; Amiri Aghdaie, S.F.; Shahin, A.; Ansari, A. Investigating the relationship among the Kansei-based design of chocolate packaging, consumer perception, and willingness to buy. J. Mark. Commun. 2020, 26, 836–855. [Google Scholar] [CrossRef]
- Nazzal, L.J.; Kaufman, J.C. The relationship of the quality of creative problem solving stages to overall creativity in engineering students. Think. Ski. Creat. 2020, 38, 100734. [Google Scholar] [CrossRef]
- Veelaert, L.; Du Bois, E.; Moons, I.; Karana, E. Experiential characterization of materials in product design: A literature review. Mater. Des. 2020, 190, 108543. [Google Scholar] [CrossRef]
- Schifferstein, H.N. Changing food behaviors in a desirable direction. Curr. Opin. Food Sci. 2020, 33, 30–37. [Google Scholar] [CrossRef]
- Taware, O.; Kumbhar, S. Sustainable Product Design: A Review. Trends Mech. Eng. Technol. 2018, 8, 105–109. [Google Scholar]
- Crul, M.R.M.; Diehl, J.C. Diseño Para la Sostenibilidad: Un Enfoque Práctico Para Economías en Vías de Desarrollo; Delft University of Technology: Paris, Francia, 2007. [Google Scholar]
- Rueda, S. Libro Verde de Sostenibilidad Urbana y Local en la era de la Información; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, España, 2012; p. 697. [Google Scholar]
- United Nations Global Compact; WBCSD. La Guía Para la Acción Empresarial en los ODS; SDG Compass, United Nations Global Compact: Amsterdam, The Netherlands, 2019; p. 29. [Google Scholar]
- De los Rios, I.C.; Charnley, F.J.S. Skills and capabilities for a sustainable and circular economy: The changing role of design. J. Clean. Prod. 2017, 160, 109–122. [Google Scholar] [CrossRef]
- Hricova, B.; Nakatova, H.; Badida, M. Principles of design for the life-cycle. Ann. DAAAM Proc. Int. DAAAM Symp. 2011, 22, 165–166. [Google Scholar]
- Gutman, V.; Torcuato, F.; Tella, D.; Lopez, A.; Ryan, R.E.O. Ecoinnovación y Producción Verde; CEPAL, Naciones Unidad: Vancouver, BC, Canadá, 2018. [Google Scholar]
Test Tube A | Test Tube B | |
---|---|---|
Fiber behavior | The fiber is distributed in a uniform way and binds easily. | The fiber is evenly distributed; however, it does not clump and releases residue to the touch |
Deformation capacity | The material manages to withstand basic bending and folding stimuli without being deformed in a plastic way | The material breaks easily to the touch and does not allow manipulations beyond the basic touch. |
Use of chemicals | Use of NaOH | Do not use NaOH |
Fabrication time | 20–36 h (including drying time) | 20–36 h (including drying time) |
Drying time | The drying process takes approximately 8–12 h at room temperature or 15 min at 350 degrees Celsius in an oven. | The drying process takes approximately 8–12 h at room temperature or 15 min at 350 degrees Celsius in an oven. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrillón, H.D.C.; Aguilar, C.M.G.; Álvarez, B.E.A. Circular Economy Strategies: Use of Corn Waste to Develop Biomaterials. Sustainability 2021, 13, 8356. https://doi.org/10.3390/su13158356
Castrillón HDC, Aguilar CMG, Álvarez BEA. Circular Economy Strategies: Use of Corn Waste to Develop Biomaterials. Sustainability. 2021; 13(15):8356. https://doi.org/10.3390/su13158356
Chicago/Turabian StyleCastrillón, Hernán Darío Castaño, Carlos Mario Gutiérrez Aguilar, and Beatriz Elena Angel Álvarez. 2021. "Circular Economy Strategies: Use of Corn Waste to Develop Biomaterials" Sustainability 13, no. 15: 8356. https://doi.org/10.3390/su13158356
APA StyleCastrillón, H. D. C., Aguilar, C. M. G., & Álvarez, B. E. A. (2021). Circular Economy Strategies: Use of Corn Waste to Develop Biomaterials. Sustainability, 13(15), 8356. https://doi.org/10.3390/su13158356