Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Climate
2.2. Feedstock and Inoculum
2.3. Digester Setup
2.4. Digestion Temperature
2.5. Chemical Characterization
2.6. Biogas Quantification and Quality Assessments
2.7. Statistics and Analysis
3. Results
3.1. Physical Conditions
3.2. Feedstocks
3.3. Carbon Conversion Efficiency
3.4. Biogas Production
3.5. Biogas Quality
4. Discussion
4.1. Feedstock and Temperature Effects
4.2. FWMC and BW Trials
4.3. Interventions
4.4. Considerations for Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evangelisti, S.; Clift, R.; Tagliaferri, C.; Lettieri, P. A Life Cycle Assessment of Distributed Energy Production from Organic Waste: Two Case Studies in Europe. Waste Manag. 2017, 64, 371–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.E.; Grossman, E.; Stuart, B.J.; Davis, S.C. Pilot-Scale Biogas Production in a Temperate Climate Using Variable Food Waste. Biomass Bioenergy 2020, 138, 105568. [Google Scholar] [CrossRef]
- Chae, K.J.; Jang, A.; Yim, S.K.; Kim, I.S. The Effects of Digestion Temperature and Temperature Shock on the Biogas Yields from the Mesophilic Anaerobic Digestion of Swine Manure. Bioresour. Technol. 2008, 99, 1–6. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The Characterisation and Treatment of Food Waste for Improvement of Biogas Production during Anaerobic Digestion—A Review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Martí-Herrero, J.; Alvarez, R.; Cespedes, R.; Rojas, M.R.; Conde, V.; Aliaga, L.; Balboa, M.; Danov, S. Cow, Sheep and Llama Manure at Psychrophilic Anaerobic Co-Digestion with Low Cost Tubular Digesters in Cold Climate and High Altitude. Bioresour. Technol. 2015, 181, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Bohn, I.; Björnsson, L.; Mattiasson, B. Effect of Temperature Decrease on the Microbial Population and Process Performance of a Mesophilic Anaerobic Bioreactor. Environ. Technol. 2007, 28, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J.M. Chapter sixteen—Biomethanation and Its Potential. In Methods in Enzymology; Methods in Methane Metabolism, Part A; Rosenzweig, A.C., Ragsdale, S.W., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 494, pp. 327–351. [Google Scholar]
- Lansing, S.; Hülsemann, B.; Choudhury, A.; Schueler, J.; Lisboa, M.S.; Oechsner, H. Food Waste Co-Digestion in Germany and the United States: From Lab to Full-Scale Systems. Resour. Conserv. Recycl. 2019, 148, 104–113. [Google Scholar] [CrossRef]
- Silva, F.P.; de Souza, S.N.M.; Kitamura, D.S.; Nogueira, C.E.C.; Otto, R.B. Energy Efficiency of a Micro-Generation Unit of Electricity from Biogas of Swine Manure. Renew. Sustain. Energy Rev. 2018, 82, 3900–3906. [Google Scholar] [CrossRef]
- Gaballah, E.S.; Abdelkader, T.K.; Luo, S.; Yuan, Q.; El-Fatah Abomohra, A. Enhancement of Biogas Production by Integrated Solar Heating System: A Pilot Study Using Tubular Digester. Energy 2020, 193, 116758. [Google Scholar] [CrossRef]
- Garfí, M.; Ferrer-Martí, L.; Villegas, V.; Ferrer, I. Psychrophilic Anaerobic Digestion of Guinea Pig Manure in Low-Cost Tubular Digesters at High Altitude. Bioresour. Technol. 2011, 102, 6356–6359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoalst-Pullen, N.; Patterson, M.W.; Mattord, R.A.; Vest, M.D. Sustainability Trends in the Regional Craft Beer Industry. In The Geography of Beer: Regions, Environment, and Societies; Patterson, M., Hoalst-Pullen, N., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 109–116. ISBN 978-94-007-7787-3. [Google Scholar]
- Curry, N.; Pillay, P. Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment. Renew. Energy 2012, 41, 200–209. [Google Scholar] [CrossRef]
- Bernstad, A.; la Cour Jansen, J. A Life Cycle Approach to the Management of Household Food Waste—A Swedish Full-Scale Case Study. Waste Manag. 2011, 31, 1879–1896. [Google Scholar] [CrossRef]
- Davis, S.C.; Kauneckis, D.; Kruse, N.A.; Miller, K.E.; Zimmer, M.; Dabelko, G.D. Closing the Loop: Integrative Systems Management of Waste in Food, Energy, and Water Systems. J. Environ. Stud. Sci. 2016, 6, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Djekic, I.; Operta, S.; Djulancic, N.; Lorenzo, J.M.; Barba, F.J.; Djordjević, V.; Tomasevic, I. Quantities, Environmental Footprints and Beliefs Associated with Household Food Waste in Bosnia and Herzegovina. Waste Manag. Res. 2019, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Ventorino, V.; Romano, I.; Pagliano, G.; Robertiello, A.; Pepe, O. Pre-Treatment and Inoculum Affect the Microbial Community Structure and Enhance the Biogas Reactor Performance in a Pilot-Scale Biodigestion of Municipal Solid Waste. Waste Manag. 2018, 73, 69–77. [Google Scholar] [CrossRef]
- Agyeman, F.O.; Tao, W. Anaerobic Co-Digestion of Food Waste and Dairy Manure: Effects of Food Waste Particle Size and Organic Loading Rate. J. Environ. Manag. 2014, 133, 268–274. [Google Scholar] [CrossRef]
- Brewers Association. National Beer Sales & Production Data; Brewers Association: Boulder, CO, USA, 2019. [Google Scholar]
- Perimenis, A.; Nicolay, T.; Leclercq, M.; Gerin, P.A. Comparison of the Acidogenic and Methanogenic Potential of Agroindustrial Residues. Waste Manag. 2018, 72, 178–185. [Google Scholar] [CrossRef]
- Ness, B. Beyond the Pale (Ale): An Exploration of the Sustainability Priorities and Innovative Measures in the Craft Beer Sector. Sustainability 2018, 10, 4108. [Google Scholar] [CrossRef] [Green Version]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic Digestion of Source-Segregated Domestic Food Waste: Performance Assessment by Mass and Energy Balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Heaton, E.; Voigt, T.; Long, S.P. A Quantitative Review Comparing the Yields of Two Candidate C4 Perennial Biomass Crops in Relation to Nitrogen, Temperature and Water. Biomass Bioenergy 2004, 27, 21–30. [Google Scholar] [CrossRef]
- Adjuik, T.; Rodjom, A.M.; Miller, K.E.; Reza, M.T.M.; Davis, S.C. Application of Hydrochar, Digestate, and Synthetic Fertilizer to a Miscanthus x Giganteus Crop: Implications for Biomass and Greenhouse Gas Emissions. Appl. Sci. 2020, 10, 8953. [Google Scholar] [CrossRef]
- Arundale, R.A.; Dohleman, F.G.; Heaton, E.A.; Mcgrath, J.M.; Voigt, T.B.; Long, S.P. Yields of Miscanthus × Giganteus and Panicum Virgatum Decline with Stand Age in the Midwestern USA. GCB Bioenergy 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Meeting US Biofuel Goals with Less Land: The Potential of Miscanthus: Miscanthus And Switchgrass Trials In Illinois. Glob. Chang. Biol. 2008, 14, 2000–2014. [Google Scholar] [CrossRef]
- Finch, J.W.; Karp, A.; McCabe, D.P.M.; Nixon, S.; Riche, A.B.; Whitmore, A.P. Miscanthus, Short-Rotation Coppice and the Historic Environment; English Heritage: New York, NY, USA, 2009. [Google Scholar]
- Clifton-Brown, J.C.; Stampfl, P.F.; Jones, M.B. Miscanthus Biomass Production for Energy in Europe and Its Potential Contribution to Decreasing Fossil Fuel Carbon Emissions: Miscanthus Biomass Production. Glob. Chang. Biol. 2004, 10, 509–518. [Google Scholar] [CrossRef]
- Hidalgo, D.; Martín-Marroquín, J.M. Effects of Inoculum Source and Co-Digestion Strategies on Anaerobic Digestion of Residues Generated in the Treatment of Waste Vegetable Oils. J. Environ. Manag. 2014, 142, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Gerin, P.A.; Vliegen, F.; Jossart, J.-M. Energy and CO2 Balance of Maize and Grass as Energy Crops for Anaerobic Digestion. Bioresour. Technol. 2008, 99, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, L.; Di Girolamo, G.; Grigatti, M.; Bertin, L.; Ciavatta, C. Anaerobic Digestion of Annual and Multi-Annual Biomass Crops. Ind. Crop. Prod. 2014, 56, 137–144. [Google Scholar] [CrossRef]
- Lansing, S.; Martin, J.F.; Botero, R.B.; Nogueira da Silva, T.; Dias da Silva, E. Wastewater Transformations and Fertilizer Value When Co-Digesting Differing Ratios of Swine Manure and Used Cooking Grease in Low-Cost Digesters. Biomass Bioenergy 2010, 34, 1711–1720. [Google Scholar] [CrossRef]
- Hidalgo, D.; Martín-Marroquín, J.M.; Sastre, E. Single-Phase and Two-Phase Anaerobic Co-Digestion of Residues from the Treatment Process of Waste Vegetable Oil and Pig Manure. Bioenergy Res. 2014, 7, 670–680. [Google Scholar] [CrossRef]
- Poulsen, T.G.; Adelard, L.; Wells, M. Improvement in CH4/CO2 Ratio and CH4 Yield as Related to Biomass Mix Composition during Anaerobic Co-Digestion. Waste Manag. 2017, 61, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. Optimization of Process Parameters for Accelerated Methane Yield from Anaerobic Co-Digestion of Rice Straw and Food Waste. Renew. Energy 2020, 149, 1352–1359. [Google Scholar] [CrossRef]
- Labatut, R.A.; Angenent, L.T.; Scott, N.R. Biochemical Methane Potential and Biodegradability of Complex Organic Substrates. Bioresour. Technol. 2011, 102, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Coombs, J. The present and future of anaerobic digestion. In Anaerobic Digestion: A Waste Treatment Technology; Critical Reports in Applied Chemistry; Chapman & Hall: New York, NY, USA, 1990; Volume 31, pp. 1–42. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The Anaerobic Digestion of Solid Organic Waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- Garfí, M.; Martí-Herrero, J.; Garwood, A.; Ferrer, I. Household Anaerobic Digesters for Biogas Production in Latin America: A Review. Renew. Sustain. Energy Rev. 2016, 60, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Climenhaga, M.A.; Banks, C.J. Anaerobic Digestion of Catering Wastes: Effect of Micronutrients and Retention Time. Water Sci. Technol. 2008, 57, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Nagao, N.; Tajima, N.; Kawai, M.; Niwa, C.; Kurosawa, N.; Matsuyama, T.; Md Yusoff, F.; Toda, T. Maximum Organic Loading Rate for the Single-Stage Wet Anaerobic Digestion of Food Waste. Bioresour. Technol. 2012, 118, 210–218. [Google Scholar] [CrossRef]
- Rajagopal, R.; Bellavance, D.; Rahaman, M.S. Psychrophilic Anaerobic Digestion of Semi-Dry Mixed Municipal Food Waste: For North American Context. Process Saf. Environ. Prot. 2017, 105, 101–108. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic Co-Digestion of Animal Manures and Lignocellulosic Residues as a Potent Approach for Sustainable Biogas Production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Rasul, M.G.; Akbar, D.; Narayanan, R.; Mofijur, M. A Comprehensive Review of the Recent Development and Challenges of a Solar-Assisted Biodigester System. Sci. Total Environ. 2021, 753, 141920. [Google Scholar] [CrossRef]
- McKeown, R.M.; Scully, C.; Enright, A.-M.; Chinalia, F.A.; Lee, C.; Mahony, T.; Collins, G.; O’Flaherty, V. Psychrophilic Methanogenic Community Development during Long-Term Cultivation of Anaerobic Granular Biofilms. ISME J. 2009, 3, 1231–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghoebarsing, A.A.; Pol, A.; van de Pas-Schoonen, K.T.; Smolders, A.J.P.; Ettwig, K.F.; Rijpstra, W.I.C.; Schouten, S.; Damsté, J.S.S.; den Camp, H.J.M.O.; Jetten, M.S.M.; et al. A Microbial Consortium Couples Anaerobic Methane Oxidation to Denitrification. Nature 2006, 440, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Jeong, Y.; Seo, K.W.; Lee, S.; Smith, A.L.; Shin, S.G.; Cho, S.-K.; Park, C. Effects of Changes in Temperature on Treatment Performance and Energy Recovery at Mainstream Anaerobic Ceramic Membrane Bioreactor for Food Waste Recycling Wastewater Treatment. Bioresour. Technol. 2018, 256, 137–144. [Google Scholar] [CrossRef]
- De Vrieze, J.; Hennebel, T.; Boon, N.; Verstraete, W. Methanosarcina: The Rediscovered Methanogen for Heavy Duty Biomethanation. Bioresour. Technol. 2012, 112, 1–9. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Matsui, T.; Morimura, S.; Wu, X.-L.; Kida, K. Effect of Temperature on Microbial Community of a Glucose-Degrading Methanogenic Consortium under Hyperthermophilic Chemostat Cultivation. J. Biosci. Bioeng. 2008, 106, 180–187. [Google Scholar] [CrossRef]
- Xing, W.; Zhao, Y.; Zuo, J. e Microbial Activity and Community Structure in a Lake Sediment Used for Psychrophilic Anaerobic Wastewater Treatment. J. Appl. Microbiol. 2010, 109, 1829–1837. [Google Scholar] [CrossRef]
Digestion Vessel | Period ID | Start Date | End Date | Feedstock ID(s) 1 | Average Feeding Rate (gal d−1) | Average Organic Loading (gVS L−1 d−1) | Hydraulic Retention Time (d) |
---|---|---|---|---|---|---|---|
A | A1 | 1 July 2015 3 | 28 September 2015 | FW | 4 | 0.87 | 120 |
A | A2 | 29 September 2015 | 13 November 2015 | FWBW | 5 | 0.91 | 105 |
A | A3 | 14 November 2015 | 29 November 2015 | FW | 2 | 0.43 | 314 |
B | B1 | 24 May 2016 3 | 29 June 2016 | FW | 4 | 0.75 | 128 |
C | C1 | 3 October 2016 3 | 19 December 2016 | FW | 5 | 1.2 | 98 |
C | C1_frozen 2 | 20 December 2016 | 11 January 2017 | n/a | - | - | - |
C | C2 | 12 January 2017 | 7 April 2017 | FW | 5 | 1.5 | 107 |
C | C3 | 8 April 2017 | 14 June 2017 | FWBW | 5 | 1.5 | 106 |
C | C4 | 15 June 2017 | 8 August 2017 | BW | 9 | 2.0 | 61 |
C | C4_sour 2 | 9 August 2017 | 27 August 2017 | n/a | - | - | 114 |
C | C5 | 28 August 2017 | 13 September 2017 | FWBW | 2 | 0.63 | 213 |
C | C6 | 14 September 2017 | 25 December 2017 | FWBWGW | 3 | 0.77 | 185 |
C | C6_frozen 2 | 26 December 2017 | 9 January 2018 | n/a | - | - | - |
C | C7 | 10 January 2018 | 18 April 2018 | FWBWGW | 3 | 0.86 | 152 |
C | C7_damaged 2 | 19 April 2018 | 21 May 2018 | n/a | - | - | - |
C | C8 | 22 May 2018 | 3 June 2018 | FW | 3 | 0.81 | 181 |
C | C9 | 4 June 2018 3 | 3 October 2018 | FWMC | 3 | 0.21 | 196 |
Feedstock Period | Material | Total Nitrogen (mg L−1) | Total Phosphorus (mg L−1) | COD (mg L−1) | Carbon (%) | Nitrogen (%) | C:N Ratio 1 |
---|---|---|---|---|---|---|---|
Food Waste | Seed Material 2 | 11,652 | 5386 | 69,591 | 28 | 4 | 8 |
FW | 2100 (375) | 378 (78) | 71,833 (5487) | 52 (0) | 4 (0) | 15 (0) | |
Digestate | -- | -- | -- | 34 (1) | 2 (0) | 19 (1) | |
Food &MiscanthusWaste | MC 3 | -- | -- | -- | 48 (0) | 0 (0) | 527 (146) |
FWMC | 672 (106) | 54 (13) | 38,040 (6385) | 46 (1) | 2 (0) | 47 (8) | |
Digestate | 1760 (177) | 333 (64) | 40,514 (8928) | 28 (1) | 2 (0) | 12 (0) | |
Food, Brewery, & Grease Waste 4 | FW | 3297 (258) | 1592 (250) | 148,779 (12,260) | 52 (1) | 4 (0) | 18 (2) |
BW | 5275 (329) | 2517 (179) | 192,244 (8241) | 60 (1) | 7 (1) | 11 (1) | |
Digestate | 2998 (155) | 1581 (217) | 110,877 (6437) | 51 | 3 | 20 |
Digestion Type | ID | Feedstock | Duration (d) | Maximum Daily Air Temp (°C) | Fed (kgVS d−1) | Average OLR (gVS L−1 d−1) | Methane Production Rate (gCH4 gVS−1 d−1) | Biogas CO2:CH4 | Input pH | Output pH | Input Temp (°C) | Output Temp (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mesophilic | (overall) | 638 | 26.8 (4) | 1.8 (3) | 0.9 (0.06) | 0.108 (0.4) | 19 (8) | 7.1 (0.6) | 6.8 (0.9) | 27.1 (18) | 32.0 (19) | |
A | FW | 85 | 28.4 (3) | 1.7 (1) | 0.9 (0.05) | 0.014 (0.01) | 8 (1) | 6.9 (0.9) | 6.5 (0.3) | 22.1 (4) | 28.0 (3) | |
A | FWBW | 25 | 21.5 (5) | 2.0 (1) | 1.0 (0.05) | 0.005 (0.00) | 10 (1) | 7.5 (0.3) | 7.1 (0.2) | 14.1 (4) | 22.6 (2) | |
B | FW | 37 | 28.3 (3) | 1.5 (1) | 0.7 (0.08) | 0.025 (0.04) | 2 (0) | 6.9 (0.6) | 8.2 (0.4) | 20.9 (5) | 18.0 (3) | |
C | BW | 74 | 27.7 (3) | 3.7 (6) | 1.9 (0.41) | 0.761 (1.3) | 196 (112) | 6.8 (0.7) | 5.7 (0.4) | 21.9 (5) | 24.8 (4) | |
C | FW | 50 | 23.5 (5) | 2.0 (1) | 1.0 (0.05) | 0.005 (0.01) | 124 (109) | 7.2 (0.4) | -- | 26.4 (6) | -- | |
C | FWBW | 84 | 23.6 (4) | 2.6 (2) | 1.3 (0.08) | 0.024 (0.04) | 21 (10) | 7.0 (0.7) | 5.8 (0.6) | 19.6 (5) | 21.2 (5) | |
C | FWBWGW | 61 | 25.9 (4) | 1.4 (1) | 0.7 (0.06) | 0.001 (0.00) | 6 (0) | 7.2 (0.6) | 5.6 (0.7) | 16.2 (6) | 18.8 (5) | |
C | FWMC | 127 | 27.8 (4) | 0.4 (0) | 0.2 (0.01) | -- | 1 (0) | 7.2 (0.4) | 7.5 (0.6) | 23.9 (3) | 24.1 (3) | |
Psychrophilic | (overall) | 375 | 10.3 (8) | 2.1 (1) | 1.0 (0.03) | 0.009 (0.02) | 32 (7) | 7.1 (0.6) | 6.5 (0.7) | 9.4 (6) | 11.3 (5) | |
A | FW | 15 | 13.8 (6) | 0.9 (1) | 0.4 (0.08) | 0.008 (0.01) | 9 (1) | 7.5 (0.2) | 7.0 (0.0) | 11.7 (4) | 16.6 (1) | |
A | FWBW | 20 | 16.4 (6) | 1.8 (1) | 0.9 (0.06) | 0.009 (0.01) | 9 (1) | 7.6 (0.3) | 7.1 (0.2) | 13.6 (4) | 19.0 (1) | |
C | FW | 150 | 10.4 (8) | 2.8 (1) | 1.4 (0.06) | 0.000 (0.00) | 24 (3) | 6.7 (0.7) | 6.3 (0.9) | 8.9 (5) | 9.5 (5) | |
C | FWBWGW | 189 | 9.2 (8) | 1.6 (1) | 0.8 (0.04) | 0.015 (0.02) | 48 (15) | 7.3 (0.3) | 6.5 (0.5) | 9.0 (6) | 9.9 (5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, K.E.; Herman, T.; Philipinanto, D.A.; Davis, S.C. Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor. Sustainability 2021, 13, 6509. https://doi.org/10.3390/su13126509
Miller KE, Herman T, Philipinanto DA, Davis SC. Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor. Sustainability. 2021; 13(12):6509. https://doi.org/10.3390/su13126509
Chicago/Turabian StyleMiller, Kimberley E., Tess Herman, Dimas A. Philipinanto, and Sarah C. Davis. 2021. "Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor" Sustainability 13, no. 12: 6509. https://doi.org/10.3390/su13126509
APA StyleMiller, K. E., Herman, T., Philipinanto, D. A., & Davis, S. C. (2021). Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor. Sustainability, 13(12), 6509. https://doi.org/10.3390/su13126509