Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin
Abstract
:1. Introduction
2. The Proposed Eleven Hydropower Dams in the Mekong River Mainstream
3. Impacts on Fisheries
3.1. Impacts on Capture Fisheries
3.1.1. Influences of Habitat Alteration on Fish Capture Yields
3.1.2. Impacts of Flow Modification on Fish Capture Yields
3.1.3. Hydro Peaking Impacts on Fish Capture Yields
3.1.4. Impacts of Sediment Loss on Fish Capture Yields
3.1.5. Impacts of Longitudinal Connectivity Disruption on Fish Capture
3.2. Impacts on Aquaculture
3.3. Economic Impacts on Fisheries
4. Impacts on Agriculture
4.1. Crop Production
4.1.1. Impact on Rice Production
4.1.2. Impacts on Maize Production
4.2. Economic Impacts on Agriculture
5. Tradeoff Between Electricity Generation and Ecosystems in the Lower Mekong Basin
6. Lessons from other Regions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moran, E.F.; Lopez, M.C.; Moore, N.; Muller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, J.; Wood, J.L. Dry-season flood-recession rice in the Mekong delta: Two thousand years of sustainable agriculture? Asian Perspect. 2007, 38, 37–50. [Google Scholar]
- Grumbine, R.E.; Xu, J.C. Mekong hydropower development. Science 2011, 332, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Zarfl, C.; Lumsdon, A.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Olson, K.R.; Morton, L.W. Water rights and fights: Lao dams on the Mekong River. J. Soil Water Conserv. 2018, 73, 35–41. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Large Dams. World Register of Dams. 2011. Available online: http://www.icold-cigb.org (accessed on 22 February 2020).
- The World Bank. Database World Development Indicators “Electricity Production from Renewable Sources, Excluding Hydroelectric (kWh)”. 2014. Available online: http://data.worldbank.org/indicator/EG.ELC.RNWX.KH (accessed on 22 February 2020).
- Galipeau, B.A.; Ingman, M.; Tilt, B. Dam-induced displacement and agricultural livelihoods in China’s Mekong Basin. Hum. Ecol. 2013, 41, 437–446. [Google Scholar] [CrossRef]
- Rex, W.; Foster, V.; Lyon, K.; Bucknall, J.; Liden, R. Supporting Hydropower: An Overview of the World Bank Group’s Engagement; World Bank Group: Washington, DC, USA, 2014. [Google Scholar]
- Scudder, T. Development-induced community resettlement. In New Directions in Social Impact Assessment Conceptual and Methodological Advances; Vanclay, F., Esteves, A., Eds.; Edward Elgar Publishing Limited: Cheltenham, UK, 2011; pp. 186–201. [Google Scholar]
- Mahe, G.; Lienou, G.; Descroix, L.; Bamba, F.; Paturel, J.E.; Laraque, A.; Meddi, M.; Haibaieb, H.; Adeaga, O.; Dieuin, C.; et al. The river of Africa: Witness of climate change and human impact on the environment. Hydrol. Process. 2013, 27, 2105–2114. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River Basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Mekong River Commission (MRC). Assessment of Basin-Wide Development Scenarios—Main Report; Mekong River Commission: Vientiane, Laos, 2011; Available online: http://www.mrcmekong.org/assets/Publications/basin-reports/BDP-Assessment-of-Basinwide-Dev-Scenarios-2011.pdf (accessed on 22 February 2020).
- Fox, C.A.; Sneddon, C.S. Political borders, epistemological boundaries, and contested knowledges: Constructing dams and narratives in the Mekong River Basin. Water. 2019, 11, 413. [Google Scholar] [CrossRef] [Green Version]
- Mekong River Commission (MRC). State of the Basin Report 2018; Mekong River Commission: Vientiane, Laos, 2019; Available online: http://www.mrcmekong.org/assets/Publications/SOBR-v8_Final-for-web.pdf (accessed on 22 February 2020).
- Ziv, G.; Baran, E.; Nam, S.; Rodriguez-Iturbe, I.; Levin, S.A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 5609–5614. [Google Scholar] [CrossRef] [Green Version]
- Lynch, A.J.; Myers, B.J.E.; Chu, C.; Eby, L.A.; Falke, J.A.; Kovach, R.P. Climate change effects on North American inland fish populations and assemblages. Fisheries 2016, 41, 346–361. [Google Scholar] [CrossRef]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittock, J.; Dumaresq, D.; Bassi, A.M. Modeling the hydropower food nexus in large river basins: A Mekong case study. Water 2016, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Orr, S.; Pittock, J.; Chapagain, A.; Dumaresq, D. Dams on the Mekong River: Lost fish protein and the implications for land and water resources. Glob. Environ. Chang. 2012, 22, 925–932. [Google Scholar] [CrossRef]
- Vietnam Ministry of Natural Resources and Environment (VMNRE). Study on the Impacts of Mainstream Hydropower on the Mekong River; HDR, Inc.: Englewood, CO, USA; Danish Hydrological Institute (DHI): Hørsholm, Denmark, 2015; Available online: https://www.mekongeye.com/wp-content/uploads/sites/2/2016/04/MDS-Final-Project-Report-Eng.pdf (accessed on 25 October 2019).
- Olson, K.R.; Morton, L.W. Polder, dikes, canals, rice, and aquaculture in the Mekong Delta. J. Soil Water Conserv. 2018, 73, 83–89. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA). International Energy Outlook—With Projections to 2040; IEA Office of Communications: Washington, DC, USA, 2016. Available online: https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf (accessed on 25 October 2019).
- Montaña, C.G.; Ou, C.; Keppeler, F.W.; Winemiller, K.O. Functional and trophic diversity of fishes in the Mekong-3S river system: comparison of morphological and isotopic patterns. Environ Biol. Fish. 2020, 103, 185–200. [Google Scholar] [CrossRef]
- Intralawan, A.; Wood, D.; Frankel, R.; Costanza, R.; Kubiszewski, I. Tradeoff analysis between electricity generation and ecosystem services in the Lower Mekong basin. Ecosyst. Serv. 2018, 30, 27–35. [Google Scholar] [CrossRef]
- Dang, T.D.; Cochrane, T.A.; Arias, M.E.; Van, P.D.T. Future hydrological alterations in the Mekong Delta under the impact of water resources development, land subsidence and sea level rise. J. Hydrol. Reg. Stud. 2018, 15, 119–133. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Burbano, M.; Roush, J.; Kang, H.; Sridhar, V.; Hyndman, D.W. A review of the integrated effects of changing climate, land use, and dams on Mekong River hydrology. Water 2018, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; He, D.; Wang, H. Environmental consequences of damming the mainstream Lancang-Mekong River: A review. Earth Sci. Rev. 2015, 146, 77–91. [Google Scholar] [CrossRef]
- Yu, X.; Geheb, K. State of Knowledge: Hydropower Environmental Mitigation Measures on the Lancang River; State of Knowledge Series 8; CGIAR Research Program on Water, Land and Ecosystems (WLE): Vientiane, Laos, 2017. [Google Scholar]
- Grumbine, R.E.; Dore, J.; Xu, J.C. Mekong hydropower: Drivers of change and governance challenges. Front. Ecol. Environ. 2012, 10, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Johnston, R.M.; Kummu, M. Water resources models in the Mekong Basin: A review. Water Resour. Manag. 2012, 26, 429–455. [Google Scholar] [CrossRef]
- McElwee, P.; Horowitz, M. Environment and Society in the Lower Mekong Basin: A Landscaping Review; Institute for Development Anthropology: Binghamton, NY, USA, 1999. [Google Scholar]
- Trung, L.D.; Duc, N.A.; Nguyen, L.T.; Thai, T.H.; Khan, A.; Rautenstrauch, K.; Schmidt, C. Assessing cumulative impacts of the proposed Lower Mekong Basin hydropower cascade on the Mekong River floodplains and delta—Overview of integrated modeling methods and results. J. Hydrol. 2018. [Google Scholar] [CrossRef]
- Kummu, M.; Lu, X.X.; Wang, J.J.; Varis, O. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 2010, 119, 181–197. [Google Scholar] [CrossRef]
- Water, Land, and Ecosystems—Mekong. Mekong Hydropower Map and Portal. 2017. Available online: https://wle-mekong.cgiar.org/maps/ (accessed on 23 February 2020).
- Dore, J.; Xiaogang, Y.; Yuk-shing, K. China’s energy reforms and hydropower expansion in Yunnan. In Democratizing Water Governance in the Mekong Region; Lebel, L., Dore, J., Daniel, R., Koma, Y.S., Eds.; Silkworm Books: Chiang Mai, Thailand, 2007; pp. 55–92. [Google Scholar]
- Stone, R. Mayhem on the Mekong. Science 2011, 333, 815–818. [Google Scholar] [CrossRef]
- Dugan, P.J.; Barlow, C.; Agostinho, A.; Baran, E.; Cada, G.F.; Chen, D.; Cowx, I.G.; Ferguson, J.W.; Jutagate, T.; Mallen-Cooper, M.; et al. Fish migration, dams, and loss of ecosystem services in the Mekong Basin. AMBIO 2010, 39, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Sabo, J.L.; Ruhi, A.; Holtgrieve, G.W.; Elliott, V.; Arias, M.E.; Ngor, P.B.; Räsänen, T.A.; So, N. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 2017, 358, 1053. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ding, L.; Ding, C.; Chen, L.; Sun, J.; Jiang, X. Responses of species and phylogenetic diversity of fish communities in the Lancang River to hydropower development and exotic invasions. Ecol. Indic. 2018, 90, 261–279. [Google Scholar] [CrossRef]
- Lyon, S.W.; King, K.; Polpanich, O.; Lacombe, G. Assessing hydrologic changes across the Lower Mekong Basin. J. Hydrol. Reg. Stud. 2017, 12, 303–314. [Google Scholar] [CrossRef]
- Kraitud, N. Hydropower projects in Thailand. Available online: http://www.mrcmekong.org/assets/Uploads/1.-Hydropower-plan-Thailand.pdf (accessed on 22 February 2020).
- Baran, E.; Myschowoda, C. Dams and fisheries in the Mekong basin. Aquat. Ecosyst. Health 2009, 12, 227–238. [Google Scholar] [CrossRef]
- Valbo-Jorgensen, J.; Coates, D.; Hortle, K. Fish diversity in the Mekong River basin. In Aquatic Ecology, the Mekong: Biophysical Environment of an International River Basin; Cambell, I.C., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 161–196. [Google Scholar] [CrossRef]
- Ferguson, J.W.; Healey, M.; Dugan, P.; Barlow, C. Potential effects of dams on migratory fish in the Mekong River: Lessons from salmon in the Fraser and Columbia rivers. Environ. Manag. 2011, 47, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Hortle, K.G. Consumption and the Yield of Fish and Other Aquatic Animals from the Lower Mekong Basin; MRC Technical Paper No. 16; Mekong River Commission: Vientiane, Laos, 2007. [Google Scholar]
- Halls, A.S.; Moyle, P.B. Comment on “designing river flows to improve food security futures in the Lower Mekong Basin”. Science 2018, 361, eaat1989. [Google Scholar] [CrossRef]
- Halls, A.S.; Paxton, B.R.; Hall, N.; Hortle, K.G.; So, N.; Chheng, P.; Peng, B.N.; Boonsong, S. Integrated Analysis of Data from MRC Fisheries Monitoring Programmes in the Lower Mekong basin; MRC Technical Paper No. 33; Mekong River Commission: Phnom Penh, Cambodia, 2013. [Google Scholar]
- Piman, T.; Lennaerts, T.; Southalack, P. Assessment of hydrological changes in the Lower Mekong Basin from basin-wide development scenarios. Hydrol. Process. 2013, 27, 2115–2125. [Google Scholar] [CrossRef]
- Pitman, T.; Cochrane, T.A.; Arias, M.E.; Green, A.; Dat, N.D. Assessment of flow changes from hydropower development and operations in Sekong, Sesan and Srepok Rivers of the Mekong Basin. J. Water Resour. Plan. Manag. 2013, 139, 723–732. [Google Scholar] [CrossRef]
- Arias, M.E.; Cochrane, T.A.; Kummu, M.; Lauri, H.; Holtgrieve, G.W.; Koponen, J.; Piman, T. Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol. Model. 2014, 272, 252–263. [Google Scholar] [CrossRef]
- Anderson, E.P.; Jenkins, C.N.; Heilpern, S.; Maldonado-Ocampo, J.A.; Carvajal-Vallejos, F.; Encalada, A.C.; Rivadeneira, J.F.; Hidalgo, M.; Cañas, C.M.; Ortega, H.; et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 2018, 4, 1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, M.E.; Cochrane, T.A.; Elliott, V. Modelling future changes of habitat and fauna in the Tonle Sap wetland of the Mekong. Environ. Cons 2014, 41, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.E.; Cochrane, T.A.; Lawrence, K.; Killeen, T.J.; Farrell, T.A. Paying the forest for electricity: A modelling framework to market forest conservation as payment for ecosystem services benefiting hydropower generation. Environ. Conserv. 2011, 38, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Baran, E.; Larinier, M.; Ziv, G.; Marmulla, G. Review of the Fish and Fisheries Aspects in the Feasibility Study of the Environmental Impact Assessment of the Proposed Xayaburi Dam on the Mekong Mainstream; World Wildlife Fund Greater Mekong: Bangkok, Thailand, 2011; Available online: http://assets.panda.org/downloads/wwf_xayaburi_dam_review310311.pdf (accessed on 22 February 2020).
- Chea, R.; Guo, C.; Grenouillet, G.; Lek, S. Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health. Ecol. Model. 2016, 323, 1–11. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G. The Effects of Hydropower Dams on the Hydrology of the Mekong Basin; State of Knowledge Series 5; CGIAR Research Program on Water, Land and Ecosystems (WLE): Vientiane, Laos, 2014. [Google Scholar]
- Koponen, J.; Lamberts, D.; Sarkkula, J.; Inkala, A.; Junk, W.J.; Halls, A.S.; Kshatriya, M. Primary and Fish Production Report (Final Report); DMS—Detailed Modelling Support Project; MRC Information Knowledge Management Programme/Finnish Environment Institute (SYKE)/EIA Centre of Finland Ltd.: Espoo, Finland, 2010. [Google Scholar]
- Kondolf, G.M.; Schmitt, R.J.P.; Carling, P.; Darby, S.; Arias, M.; Bizzi, S.; Castelletti, A.; Cochrane, T.A.; Gibson, S.; Kummu, M.; et al. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin. Sci. Total Environ. 2018, 625, 114–134. [Google Scholar] [CrossRef] [Green Version]
- Mekong River Commission (MRC). Basin Development Plan Programme, Phase 2. Technical Assessment Note 11: Impacts on Fisheries; Mekong River Commission: Vientiane, Laos, 2010. [Google Scholar]
- International Centre for Environmental Management (ICEM). Strategic Environmental Assessment of Hydropower on the Mekong Mainstream; Final Report; Mekong River Commission: Hanoi, Viet Nam, 2010. [Google Scholar]
- Intralawan, A.; Wood, D.; Frankel, R. Working Paper on Economic Environmental and Social Impact of Hydropower Development in the Lower Mekong Basin; Natural Resources and Environmental Management Research and Training Center: Chiang Rai, Thailand, 2015; pp. 1–13. [Google Scholar]
- Nam, S.; Phommakone, S.; Vuthy, L.; Samphawamana, T.; Son, N.H.; Khumsri, M.; Bun, N.P.; Sovanara, K.; Degen, P.; Starr, P. Catch and Culture, Mekong River Commission, Fisheries Research and Development in the Mekong Region. 2015, Volume 21. No. 3. Available online: http://www.mrcmekong.org/assets/Publications/Catch-and-Culture/CatchCultureVol-21.3.pdf (accessed on 22 February 2020).
- Pearse-Smith, S.W.D. The impact of continued Mekong Basin hydropower development on local livelihoods. Cons. J. Sustain. Dev. 2012, 7, 73–86. [Google Scholar]
- Quyen, N.H.; Duong, T.H.; Yen, B.T.; Sebastian, L. Impact of Climate Change on Future Rice Production in the Mekong River Delta; Climate Change, Agriculture and Food Security (CCAFS): Frederiksberg, Denmark, 2018. [Google Scholar]
- World Bank Group (World Bank). 2019. Available online: http://documents.worldbank.org (accessed on 22 February 2020).
- Morton, L.W.; Olson, K.R. The pulses of the Mekong River Basin: Rivers and the livelihoods of farmers and fishers. J. Environ. Prot. 2018, 9, 431–459. [Google Scholar] [CrossRef] [Green Version]
- Manh, N.V.; Dung, N.V.; Hung, N.N.; Kummu, M.; Merz, B.; Apel, H. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob. Planet. Chang. 2015, 127, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; Sarkkula, J. Impact of the Mekong river flow alteration on the Tonle Sap flood pulse. AMBIO 2008, 37, 185–192. [Google Scholar] [CrossRef]
- Dudgeon, D. Large-scale hydrological changes in tropical Asia: Prospects for riverine biodiversity: The construction of large dams will have an impact on the biodiversity of tropical Asian rivers and their associated wetlands. BioScience 2000, 50, 793–806. [Google Scholar] [CrossRef]
- Le, T.V.H.; Nguyen, H.N.; Wolanski, E.; Tran, T.C.; Haruyama, S. The combined impact on the flooding in Vietnam’s Mekong river delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Estuar. Coast. Shelf Sci. 2007, 71, 110–116. [Google Scholar] [CrossRef]
- Kontgis, C.; Schneider, A.; Ozdogan, M.; Kucharik, C.; Tri, V.P.D.; Duc, N.H.; Schatz, J. Climate change impacts on rice productivity in the Mekong River Delta. Appl. Geogr. 2019, 102, 71–83. [Google Scholar] [CrossRef]
- Mainuddin, M.; Kirby, M. Agricultural productivity in the lower Mekong Basin: Trends and future prospects for food security. Food Secur. 2009, 1, 71–82. [Google Scholar] [CrossRef]
- Berg, H.; Soderholm, A.E.; Soderstrom, A.S.; Tam, N.T. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong Delta, Vietnam. Sustain. Sci. 2017, 12, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Dung, T.D.; Halsema, G.; Hellegers, P.J.G.J.; Long, H.P.; Ludwig, F. Long-term sustainability of the Vietnamese Mekong delta in question: An economic assessment of water management alternatives. Agric. Water Manag. 2019, 223, 105703. [Google Scholar]
- Lehner, B.; Liermann, R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Doell, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. 2011, 9, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Nilsson CReidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Qi, J. Hydro-dam—A nature-based solution or an ecological problem: The fate of the Tonle Sap Lake. Environ. Res. 2017, 158, 24–32. [Google Scholar] [CrossRef] [PubMed]
- The Economist. The Rights and Wrongs of Belo Monte: Dams in Amazon. Available online: http://www.economist.com/news/americas/21577073-having-spent-heavily-make-worlds-third-biggest-hydroelectric-project-greener-brazil (accessed on 22 January 2020).
- Fearnside, P.M. Emission from tropical hydropower and the IPCC. Environ. Sci. Policy 2015, 50, 225–239. [Google Scholar] [CrossRef]
- Mcgrath, D.G.; de Castro, F.; Futemma, C.; de Amaral, B.D.; Calabria, J. Fisheries and the evolution of the resource management on the lower Amazon floodplain. Hum. Ecol. 1993, 21, 167–195. [Google Scholar] [CrossRef]
- Sternberg, R. Damming the river: A changing perspective on altering nature. Renew. Sustain. Energy Rev. 2006, 10, 165–197. [Google Scholar] [CrossRef]
- Green, N.; Sovacool, B.K.; Hancok, K. Grand designs: Assessing the Africa energy security implications of the Grand Inga Dam. Afr. Stud. Rev. 2015, 58, 133–158. [Google Scholar] [CrossRef]
- Dai, S.B.; Lu, X.X. Sediment load change in the Yangtze River (Changjian): A review. Geomorphology 2014, 215, 60–73. [Google Scholar] [CrossRef]
- Kang, B.; He, D.; Perrett, L.; Wang, H.; Hu, W.; Deng, W.; Wu, Y. Fish and fisheries in the Upper Mekong: Current assessment of the fish community, threats and conservation. Rev. Fish Biol. Fish. 2009, 19, 465–480. [Google Scholar] [CrossRef]
- Biggs, D. Fixing the delta: History and the politics of hydraulic infrastructure development and conservation in the Mekong Delta. In Environmental Change and Agricultural Sustainability in the Mekong Delta; Stewart, M.A., Coclanis, P.A., Eds.; Springer: New York, NY, USA, 2011; pp. 35–44. [Google Scholar]
- Vorosmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555. [Google Scholar] [CrossRef]
- Kano, Y.; Dudgeon, B.; Nam, S.; Samejima, H.; Watanabe, K.; Grudpan, C.; Grudpan, J.; Magtoon, W.; Musikasinthorn, P.; Thanh, N.T.; et al. Impact of dams and global warming on fish biodiversity in the Indo-Burma hotspot. PLoS ONE 2016, 11, e0160151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorosmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitsky, J. Anthropogenic sediment retention: Major global-scale impact from the population of registered impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Yang, S.L.; Xu, K.H.; Milliman, J.D.; Yang, H.F.; Wu, C.S. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 2015, 5, 12581. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Milliman, J.D.; Li, P.; Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Chang. 2011, 75, 14–20. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Allison, E.H.; Perry, A.L.; Badjeck, M.C.; Neil Adger, W.; Brown, K.; Conway, D.; Andrew, N.L. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 2009, 10, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Hijioka, Y.E.; Lin, J.J.; Pereira, R.T.; Corlett, X.; Cui, G.E.; Insarov, R.D.; Lasco, E.L.; Surjan, A. Asia. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R.C.B., Field, D.J., Dokken, M.D., Mastrandrea, K.J., Mach, T.E., Bilir, M., Chatterjee, K.L., Ebi, Y.O., Estrada, R.C., Genova, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1327–1370. [Google Scholar]
- Baran, E.; Guerin, E. Dams, Changes in Sediment Load and Impact on Fish Resources in the Mekong: Approach and Way Forward; Report for the project “a climate resilient Mekong: Maintaining the flows that nourish life” led by the Natural Heritage Institute; World Fish Center: Phnom Penh, Cambodia, 2012. [Google Scholar]
- Evers, J.; Pathirana, A. Adaption to climate change in the Mekong River Basin: Introduction to the special issue. Clim. Chang. 2018, 149, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Resch, G.; Held, A.; Faber, T.; Panzer, C.; Toro, F.; Haas, R. Potentials and prospects for renewable energies at global scale. Energy Policy 2008, 36, 4048–4056. [Google Scholar] [CrossRef]
No | Project | Location | Proposed Developer | Power Capacity (MW) | Reservoir Area (km2) | Relocated Residents |
---|---|---|---|---|---|---|
1 | Pak Beng | Pak Beng town, Lao PDR | China Datang Cooperation | 1200 | 87 | 6700 |
2 | Luang Brabang | Luang Brabang town, Lao PDR | Petro Vietnam Power Services | 1100 | 55.9 | 10,264 |
3 | Xayaburi | 150 km downstream of Luang Brabang town, Lao PDR | CK Power PLC, Thailand | 1280 | 55.9 | 2130 |
4 | Pak Lay | Pak Lay town, Lao PDR | CIEC and Sinohydro of China | 1320 | 108 | 6129 |
5 | Sanakham | Between Loei and Vientiane provinces, Lao PDR | China Datang Cooperation | 700 | 81 | 4000 |
6 | Pak Chom | Shared between Thailand and Lao PDR, 100 km upstream of Vieantiane, Lao PDR | Not yet, pre-feasibility studies commissioned by Thailand and Lao PDR governments | 1079 | 74 | 535 |
7 | Ban Koum | Shared between Thailand and Lao PDR, 10 km above the confluence of the Mun/Chi river with the Mekong | Ital-Thai, Thailand | 1872 | 133 | 935 |
8 | Lat Sua | Between Pakse and the Mun/Chi confluence, Thailand | Charoen Energy Water Asia Co., Thailand | 686 | 13 | None |
9 | Don Sahong | Hu Sahong, Thailand | Mega First Corporation Berhad, Malaysia | 240 | 0.29 | 66 |
10 | Stung Treng | Stung Treng town, Cambodia | Vietnam Urban and Industrial Investment Cooperation, Vietnam | 900 | 211 | 10,000 |
11 | Sambor | Sambor village, Cambodia | China Guodian Corporation, China | 2600 | 620.5 | 19,034 |
Project | Full Supply Level (m) | Lowest Supply Level (m) | Active Volume (million m3) | Inactive Volume (million m3) | Mean Annual Flow (million m3/year) | Mean Active Storage Time (d) | Operation |
---|---|---|---|---|---|---|---|
Chinese | |||||||
Gongguoqiao | n.a | n.a | 120 | 240 | 31,060 | 1.4 | Seasonal |
Xiaowan | 1235 | 1166 | 9900 | 4660 | 38,470 | 96.9 | Yearly |
Manwan | 899 | 888 | 257 | 663 | 38,800 | 2.5 | Seasonal |
Dachaoshan | n.a | n.a | 467 | 423 | 38,790 | 4.4 | Seasonal |
Huozhadu | 810 | 760 | 12,300 | 9400 | 55,190 | 81.3 | Yearly |
Jinghon | n.a | n.a | 249 | 891 | 58,030 | 1.6 | Seasonal |
Lao PDR/Cambodia | |||||||
Pakbeng | 345 | 340 | 442.4 | 1295 | 96,500 | 1.67 | Daily |
Luang Prabang | 310 | 300 | 734 | 1,311.7 | 100,000 | 2.63 | Daily |
Xayaburi | 275 | 270 | 738.1 | 78.3 | 124,000 | 2.16 | Daily |
Paklay | 240 | 235 | 383.5 | 967.8 | 130,700 | 1.07 | Daily |
Sanakham | 215 | 210 | 206.1 | 61.7 | 133,800 | 0.56 | Daily |
Pakchom | 192 | 190 | 440.9 | 656 | 141,600 | 1.10 | Daily |
Ban Kum | 115 | 110 | 651.5 | 1458.5 | 294,600 | 0.81 | Daily |
Latsua | 97.5 | 90.0 | 550 | 1000 | 294,600 | 0.68 | Daily |
Don Sahong | 75.1 | 71.0 | 115 | 476 | 325,100 | 0.13 | Daily |
Stung Treng | 52.0 | 51.0 | 150.8 | 518 | 405,800 | 0.14 | Daily |
Sambor | 40.0 | 38.0 | 1450 | 4001.1 | 432,500 | 0.98 | Daily |
White Fish | Grey Fish | Black Fish | Marine/Estuarine Fish | Exotic Fish | OAA | Total | |
---|---|---|---|---|---|---|---|
Cambodia | |||||||
Fish losses (t) | 178,169 | 35,407 | 30,066 | 212 | 0 | 23,005 | 267,429 |
Vietnam | |||||||
Fish losses (t) | 276,847 | 19,491 | 11,478 | 19,088 | 14,596 | 25,071 | 366,570 |
Direct Losses in Gross Revenue | Total Economic Output Loss | Loss to GDP | Total Loss (% Regional/National GDP) | |||
---|---|---|---|---|---|---|
Cambodia | ||||||
Agriculture (Million USD) | 54.5 | 84.0 | 84.0 | 3.7 | ||
Fishery (Million USD) | 402.6 | 660.5 | 326.2 | |||
Total (Million USD) | 457.1 | 744.5 | 410.2 | |||
Vietnam | ||||||
Mekong Delta | Nation | Mekong Delta | Nation | 0.3 | ||
Agriculture (Million USD) | 128.2 | 264.7 | 270.8 | 57.1 | 58.8 | |
Fishery (Million USD) | 532.5 | 879.0 | 969.8 | 146.1 | 165.4 | |
Total (Million USD) | 660.7 | 1,143.7 | 1,240.6 | 203.2 | 224.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, Y.; Lee, H.S.; Trung, B.H.; Tran, H.-D.; Lall, M.K.; Kakar, K.; Xuan, T.D. Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin. Sustainability 2020, 12, 2408. https://doi.org/10.3390/su12062408
Yoshida Y, Lee HS, Trung BH, Tran H-D, Lall MK, Kakar K, Xuan TD. Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin. Sustainability. 2020; 12(6):2408. https://doi.org/10.3390/su12062408
Chicago/Turabian StyleYoshida, Yuichiro, Han Soo Lee, Bui Huy Trung, Hoang-Dung Tran, Mahrjan Keshlav Lall, Kifayatullah Kakar, and Tran Dang Xuan. 2020. "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin" Sustainability 12, no. 6: 2408. https://doi.org/10.3390/su12062408