Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Defintion and Calculation of Human Appropriation of Net Primary Production (HANPP)
2.3. Estimation of HANPPharv
2.4. Estimation of HANPPluc
2.5. Analysis Methods
2.5.1. Spatial Allocation Methods
2.5.2. Land Use Transfer Matrix
2.6. Datasets
3. Results
3.1. NPPpot, NPPact and HANPPharv
3.2. HANPP in the Yangtze River Delta
3.3. Regional Differences in HANPP
3.4. Influence of Land Use Change on HANPP
4. Discussion
4.1. Comparison with Previous Studies
4.2. Uncertainties in These Calculations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- United Nations Environment Programme. Globe Environment Outlook 5: Environment for the Future We want; Progress Press Ltd: Mriehel, Malta, 2012. [Google Scholar]
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Monfreda, C.; Loh, J.; Myers, N.; Norgaard, R.; et al. Tracking the ecological overshoot of the human economy. Proc. Natl. Acad. Sci. USA 2002, 99, 9266–9271. [Google Scholar] [CrossRef] [Green Version]
- Adriaanse, A.; Bringezu, S.; Hammond, A. Resource Flows: The Material Basis of Industrial Economies; World Resources Institute: Washington, DC, USA, 1997. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Koffi, E.N.; Rayner, P.J.; Scholze, M.; Beer, C. Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system. Glob. Biogeochem. Cycles 2012, 26, 104–105. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W. A Measurable Planetary Boundary for the Biosphere. Science 2012, 337, 1458–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defries, R.S.; Field, C.B.; Fung, I.; Collatz, G.L.; Bounoua, L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycles 1999, 13, 803–815. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, X.; Zhao, Y.; Zeng, X.; Xia, L. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Z.; Lai, C.; Wu, X.; Zeng, Z.; Chen, X.; Lian, Y. Response of net primary production to land use and land cover change in mainland China since the late 1980s. Sci. Total Environ. 2018, 639, 237–247. [Google Scholar] [CrossRef]
- Zika, M.; Erb, K.H. The global loss of net primary production resulting from human–induced soil degradation in drylands. Ecol. Econ. 2009, 69, 310–318. [Google Scholar] [CrossRef]
- Xu, D.Y.; Kang, X.W.; Liu, Z.L.; Zhuang, D.F.; Pan, J.J. The relative roles of climate change and human activities in the process of desertification in the Ordos region. Sci. China 2009, 39, 516–528. (In Chinese) [Google Scholar]
- Xu, D.; Song, A.; Li, D.; Ding, X.; Wang, Z. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010. Front. Earth Sci. 2019, 13, 43–54. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Li, J.; Hua, T. Roles of climate changes and human interventions in land degradation: A case study by net primary productivity analysis in China’s Shiyanghe Basin. Environ. Earth Sci. 2011, 64, 2183–2193. [Google Scholar] [CrossRef]
- Li, C.H.; Fan, Y.P.; Cao, H.Y.; Han, H. Impact of human activities on net primary productivity based on the CASA model: A case study of the Shiyang River Basin. Arid Land Geogr. 2018, 41, 144–153. (In Chinese) [Google Scholar]
- Li, C.H.; Zhao, J.; Shi, Y.F.; Hu, X. The impact of human activities on net productivity based on the coefficient of variation: A case study of the Shiyang River Basin. Acta Ecol. Sin. 2016, 36, 4034–4044. (In Chinese) [Google Scholar]
- Zhou, W.; Sun, Z.; Li, J.; Gang, C.; Zhang, C. Desertification dynamic and the relative roles of climate change and human activities in desertification in the Heihe River Basin based on NPP. J. Arid Land 2013, 5, 465–479. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, H. Effects of human activities on net primary productivity in the Xilingol grassland. J. Nat. Resour. 2017, 32, 1125–1133. (In Chinese) [Google Scholar]
- Du, J.; Yu, D. Impact of climate change and human activities on net primary productivity of grassland in agro–pastoral transitional zone in northern China. J. Beijing Norm. Univ. 2018, 54, 365–372. (In Chinese) [Google Scholar]
- Mu, S.J.; Zhou, S.; Chen, Y.; Li, J.; Ju, W.M.; Odeh, I. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China. Glob. Planet Chang. 2013, 108, 29–41. [Google Scholar] [CrossRef]
- Gang, C.; Zhao, W.; Zhao, T.; Zhang, Y.; Gao, X.; Wen, Z. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Sci. Total Environ. 2018, 645, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H.; Erb, K.H.; Krausmann, F. Human appropriation of net primary production: Patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 2014, 39, 363–391. [Google Scholar] [CrossRef]
- Haberl, H. Human appropriation of net primary production as an environmental indicator: Implications for sustainable development. Ambio 1997, 26, 143–146. [Google Scholar]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Kowalski, M.F. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R.H.; Likens, G.E. Primary production: The biosphere and man. Hum. Ecol. 1973, 1, 357–369. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human appropriation of the products of photosynthesis. BioScience 1986, 36, 368–373. [Google Scholar] [CrossRef]
- Wright, D.H. Human impacts on energy flow through natural ecosystems, and implications for species endangerment. Ambio 1990, 19, 189–194. [Google Scholar]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873. [Google Scholar] [CrossRef] [Green Version]
- Krausmann, F. Land use and industrial modernization: An empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy 2001, 18, 17–26. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarzlmüller, E. Human appropriation of aboveground net primary production in Spain, 1955–2003: An empirical analysis of the industrialization of land use. Ecol. Econ. 2009, 69, 282–291. [Google Scholar] [CrossRef]
- Niedertscheider, M.; Gingrich, S.; Erb, K.H. Changes in land use in South Africa between 1961 and 2006: An integrated socio–ecological analysis based on the human appropriation of net primary production framework. Reg. Environ. Chang. 2012, 12, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Niedertscheider, M.; Erb, K.H. Land system change in Italy from 1884 to 2007: Analysing the North–South divergence on the basis of an integrated indicator framework. Land Use Policy 2014, 39, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedertscheider, M.; Kuemmerle, T.; Müller, D.; Erb, K.H. Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007. Glob. Environ. Chang. 2014, 28, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fetzel, T.; Gradwohl, M.; Erb, K.H. Conversion, intensification, and abandonment: A human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005. Ecol. Econ. 2014, 97, 201–208. [Google Scholar] [CrossRef]
- Fetzel, T.; Niedertscheider, M.; Haberl, H.; Kuemmerle, T.; Erb, K.H. Patterns and changes of land use and land-use efficiency in Africa 1980–2005: An analysis based on the human appropriation of net primary production framework. Reg. Environ. Chang. 2016, 16, 1507–1520. [Google Scholar] [CrossRef]
- Cardoch, L.; Day, J.W., Jr.; Ibàñez, C. Net primary productivity as an indicator of sustainability in the Ebro and Mississippi deltas. Ecol. Appl. 2002, 12, 1044–1055. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbooks Database 2018. Available online: http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm (accessed on 16 November 2019).
- Yuan, J.; Xu, Y.P.; Xiang, J.; Wu, L.; Wang, D.Q. Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environ. Sci. Pollut. Res. 2019, 26, 32866–32879. [Google Scholar] [CrossRef]
- Hu, A.T. The method of phyllostachys pubescens measurement and the application of the normal bamboo of stump diameter. Hunan For. Sci. Technol. 1987, 1, 16–19. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhang, Y.; Pan, L.; Tang, S.; Huang, D. Analysis on current situation of herbivorous livestock forage supply/demand in China. Chin. J. Anim. Sci. 2014, 50, 12–16. (In Chinese) [Google Scholar]
- Li, J.X. The Study on Forage Supply and Demand in China’s Different Areas and Suggestions; Chinese Academy of Agricultural Sciences: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water balance -hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Lieth, H. Primary production: Terrestrial ecosystems. Hum. Ecol. 1973, 1, 303–332. [Google Scholar] [CrossRef]
- Uchijima, Z.; Seino, H. Agroclimatic evaluation of net primary productivity of natural vegetations. J. Agric. Meteorol. 1985, 40, 343–352. [Google Scholar] [CrossRef]
- Lieth, H. Evapotranspiration and primary productivity: CW Thornthwaite memorial model. Pub. Climatol. 1972, 25, 37–46. [Google Scholar]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815–835. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J.; Park, W.M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Li, X.B. Discussion on the index method of regional land use change. Acta Geogr. Sin. 2003, 25, 643–650. (In Chinese) [Google Scholar]
- He, J.; Yang, K. China Meteorological forcing dataset. Cold Arid Reg. Sci. Data Cent. Lanzhou 2011. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Clim. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Clim. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- Keeling, C.D.; Piper, S.C.; Bacastow, R.B.; Wahlen, M.; Whorf, T.P.; Heimann, M.; Meijer, H.A. Exchanges of Atmospheric CO2 and 13CO2 with the Terrestrial Biosphere and Oceans from 1978 to 2000 I. Global Aspects 2001, 1, 1–28. [Google Scholar]
- Zöbler, L. A world soil file for global climate modelling. NASA Tech. Memo 1986, 87802, 33. [Google Scholar]
- Huang, Q.; Ju, W.M.; Zhang, F.Y.; Zhang, Q. Roles of climate change and increasing CO2 in driving changes of net primary productivity in China simulated using a dynamic global vegetation model. Sustainability 2019, 11, 4176. [Google Scholar] [CrossRef] [Green Version]
- Remote Sensing Monitoring Data of Land Use in China. Available online: http://www.resdc.cn (accessed on 5 November 2018).
- National Bureau of Statistics of China. China Statistical Yearbook Database (2005–2015). Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 18 March 2019).
- National Forestry and Grassland Administration. China Forestry Statistical Yearbook Database (2005–2015). Available online: http://www.forestry.gov.cn/data.html (accessed on 20 March 2019).
- Ministry of Agriculture of China. China Agriculture Yearbook Database (2005–2015). Available online: http://tongji.cnki.net/kns55/navi/HomePage.aspx?id=N2013060001&name=YZGNV&floor=1 (accessed on 21 March 2019).
- Xu, J.P.; Wang, W.; Cai, X.J.; Xu, Z.L.; Xu, J.X. A comparison of the rossby wave activities and circulation features of the drought in winter-spring of 2011 and in summer of 2013 over mid-lower reaches of the Yangtze River basin. J. Trop. Meteorol. 2017, 33, 992–999. [Google Scholar]
- Plutzar, C.; Kroisleitner, C.; Haberl, H.; Fetzel, T.; Bulgheroni, C.; Beringer, T.; Hoster, P.; Kastner, T.; Kuemmerle, T.; Lauk, C.; et al. Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Reg. Environ. Chang. 2015, 41, 1–14. [Google Scholar] [CrossRef]
- Musel, A. Human appropriation of net primary production in the United Kingdom, 1800–2000: Changes in society’s impact on ecological energy flows during the agrarian-industrial transition. Ecol. Econ. 2009, 69, 270–281. [Google Scholar] [CrossRef]
- Chen, A.; Li, R.; Wang, H.; He, B. Quantitative assessment of human appropriation of aboveground net primary production in China. Ecol. Model 2015, 312, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Kastner, T. Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century. Ecol. Econ. 2009, 69, 260–269. [Google Scholar] [CrossRef]
- Kohlheb, N.; Krausmann, F. Land use change, biomass production and HANPP: The case of Hungary 1961–2005. Ecol. Econ. 2009, 69, 292–300. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Y.; Zhang, X.; Wu, J.X.; Yu, C.Q.; Li, M.; Wu, J.S. Patterns and dynamics of the human appropriation of net primary production and its components in Tibet. J. Environ. Manag. 2018, 210, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Y.; Pu, L.J.; Huang, Q. Quantitative assessment of the human appropriation of net primary production (HANPP) in the coastal areas of Jiangsu, China. Sustainability 2015, 7, 15857–15870. [Google Scholar] [CrossRef]
Livestock | Cow | Horse | Donkey | Mule | Camel | Sheep |
---|---|---|---|---|---|---|
young livestock adult livestock | 2.5 | 2.5 | 2 | 2.5 | 3.5 | 0.7 |
5 | 5 | 5 | 4 | 7 | 1 |
Province | Cropland | Forestland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Jiangsu | 67,430 (66.9%) | 3386 (3.4%) | 789 (0.8%) | 12,444 (12.3%) | 16,695 (16.6%) | 22 (0.0%) |
Anhui | 79,901 (57.0%) | 32,383 (23.1%) | 8299 (5.9%) | 7332 (5.2%) | 12,297 (8.8%) | 14 (0.0%) |
Shanghai | 3809 (61.4%) | 100 (1.6%) | 8 (0.1%) | 266 (4.3%) | 2024 (32.6%) | 0 (0.0%) |
Zhejiang | 25,403 (25.1%) | 64,855 (64.0%) | 2231 (2.2%) | 2521 (2.5%) | 6219 (6.1%) | 82 (0.1%) |
Total | 176,543 (50.7%) | 100,724 (28.8%) | 11,327 (3.3%) | 22,562 (6.5%) | 37,235 (10.7%) | 118 (0.0%) |
Year | Cropland | Forestland | Grassland | Construction Land | Total | ||||
---|---|---|---|---|---|---|---|---|---|
Tg C yr−1 | % | Tg C yr−1 | % | Tg C yr−1 | % | Tg C yr−1 | % | ||
2005 | 73.1 | 84.2% | 4.4 | 5.0% | 7.0 | 8.1% | 2.2 | 2.5% | 86.8 |
2006 | 78.2 | 84.3% | 4.7 | 5.1% | 6.9 | 7.4% | 2.9 | 3.1% | 92.7 |
2007 | 76.6 | 83.8% | 4.8 | 5.2% | 6.7 | 7.3% | 3.3 | 3.6% | 91.5 |
2008 | 79.2 | 83.1% | 5.7 | 5.9% | 6.7 | 7.0% | 3.8 | 4.0% | 95.3 |
2009 | 80.8 | 84.0% | 4.9 | 5.1% | 6.9 | 7.2% | 3.5 | 3.7% | 96.1 |
2010 | 80.4 | 83.0% | 5.6 | 5.8% | 7.1 | 7.3% | 3.7 | 3.8% | 96.9 |
2011 | 81.7 | 84.3% | 5.7 | 5.9% | 6.8 | 7.0% | 2.7 | 2.7% | 96.8 |
2012 | 83.9 | 83.9% | 5.7 | 5.7% | 6.8 | 6.8% | 3.6 | 3.6% | 100.0 |
2013 | 84.1 | 82.9% | 5.7 | 5.6% | 6.9 | 6.9% | 4.7 | 4.6% | 101.4 |
2014 | 86.2 | 83.3% | 5.5 | 5.3% | 7.0 | 6.8% | 4.8 | 4.6% | 103.6 |
2015 | 87.9 | 83.3% | 5.3 | 5.1% | 7.2 | 6.8% | 5.1 | 4.8% | 105.6 |
Type | Cropland | Forestland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
cropland | 173,432 | 38 | 31 | 311 | 5636 | 18 |
forestland | 9 | 100,312 | 73 | 5 | 577 | 5 |
grassland | 14 | 7 | 11,169 | 10 | 92 | 1 |
water | 94 | 2 | 79 | 22,173 | 193 | 14 |
construction land | 87 | 1 | 22 | 21 | 33,975 | 2 |
unused land | 0 | 1 | 0 | 3 | 0 | 102 |
Type | Cropland | Forestland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
cropland | 10,019.4 | −15.3 | −1.9 | −144.9 | 133.9 | −8.6 |
forestland | 4.3 | 1151.1 | 19.7 | −0.3 | 270.2 | −0.4 |
grassland | 4.5 | −2.0 | 73.1 | −2.9 | 15.0 | −0.4 |
water | 52.1 | 0.1 | 38.1 | 0.0 | 94.7 | 0.0 |
construction land | 8.7 | −0.4 | 1.2 | −9.6 | 1583.1 | −1.0 |
unused land | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Area | Period | HANPP % of NPPpot | References |
---|---|---|---|
Global | 1910–2005 | 13–25 (↑) | [34] |
Europe | 1990–2006 | 44–43 (↓) | [66] |
Africa | 1980–2005 | 14–20 (↑) | [40] |
Austria | 1950–1995 | 60–50 (↓) | [33] |
United Kingdom | 1800–2000 | 71–68 (↓) | [67] |
Italy | 1884–2007 | 78–56 (↓) | [37] |
Germany | 1883-2007 | 75–65 (↓) | [38] |
Spain | 1955–2003 | 67–61 (↓) | [35] |
Hungary | 1961–2005 | 67–49 (↓) | [70] |
New Zealand | 1860–2005 | 34–32 (↓) | [39] |
South Africa | 1961–2006 | 21–25 (↑) | [36] |
Philippines | 1910–2003 | 35–62 (↑) | [69] |
China | 2001–2010 | 49–58 (↑) | [68] |
Tibet | 1989–2015 | 7–14 (↑) | [71] |
The Yangtze River Delta | 2005–2015 | 59–72 (↑) | this study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Zhang, F.; Zhang, Q.; Ou, H.; Jin, Y. Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta. Sustainability 2020, 12, 1697. https://doi.org/10.3390/su12041697
Huang Q, Zhang F, Zhang Q, Ou H, Jin Y. Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta. Sustainability. 2020; 12(4):1697. https://doi.org/10.3390/su12041697
Chicago/Turabian StyleHuang, Qing, Fangyi Zhang, Qian Zhang, Hui Ou, and Yunxiang Jin. 2020. "Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta" Sustainability 12, no. 4: 1697. https://doi.org/10.3390/su12041697
APA StyleHuang, Q., Zhang, F., Zhang, Q., Ou, H., & Jin, Y. (2020). Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta. Sustainability, 12(4), 1697. https://doi.org/10.3390/su12041697