Econometric Analyses of Adoption and Household-Level Impacts of Improved Rice Varieties in the Uplands of Yunnan, China
Abstract
:1. Introduction
2. Development and Dissemination of Improved Upland Rice Varieties in Yunnan
3. Methodology and Data
3.1. Data Collection and Sampling Design
3.2. Econometric Modeling of Adoption Patterns and Impact
Adoption model
3.3. Data Sets Used
4. Results and Discussions
4.1. Characteristics of Adoption and Adopters
4.2. Returns to Improved Upland Rice Varieties
4.3. Determinants of Adoption
4.4. Assessment of Impact
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Hazell, P. Asia’s Green Revolution: Past achievements and future challenges. In Rice in the Golbal Economy: Strategic Research and Policy Issues for Food Security; Pandey, S., Byerlee, D., Dawe, D., Dobermann, A., Monhanty, S., Rozelle, S., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2010; pp. 61–92. [Google Scholar]
- Hazell, P. An Assessment of the Impact of Agricultural Research in South Asia since the Green Revolution; CGIAR Science Councial Secretariat: Rome, Italy, 2008. [Google Scholar]
- Evenson, R.E.; Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajisa, K.; Payongayong, E. Potential of and constraints to the rice Green Revolution in Mozambique: A case study of the Chokwe irrigation scheme. Food Policy 2011, 36, 614–625. [Google Scholar] [CrossRef]
- Stone, G.D.; Glover, D. Disembedding grain: Golden Rice, the Green Revolution, and heirloom seeds in the Philippines. Agric. Hum. Values 2017, 34, 87–102. [Google Scholar] [CrossRef]
- Pandey, S.; Khiem, N.T.; Waibel, H.; Thien, T.C. Upland Rice, Household Food Security, and Commercialization of Upland Agriculture in Vietnam; International Rice Research Institute: Los Banos, Philippines, 2006; p. 106. [Google Scholar]
- Pandey, S. Food security, poverty and environmental sustainability in the uplands: The strategic role of rice research. In Natural Resource Management for Poverty Reduction and Environmental; Haefele, S.M., Ismail, A.M., Eds.; The World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Atlin, G.N.; Lafitte, H.R.; Tao, D.; Laza, A.; Amante, A.; Courtois, B. Developing rice cultivars for high-fertility upland systems in the Asian tropics. Field Crop. Res. 2006, 97, 43–52. [Google Scholar] [CrossRef]
- Wang, H.; Pandey, S.; Hu, F.; Xu, P.; Zhou, J.; Li, J.; Deng, X.; Feng, L.; Wen, L.; Li, J.; et al. Farmers’ Adoption of Improved Upland Rice Technologies for Sustainable Mountain Development in Southern Yunnan. Mt. Res. Dev. 2010, 30, 373–380. [Google Scholar] [CrossRef]
- People’s Daily Online. 2016-02-16. Yunnan has built 17.44 million mu (about 1.16 million ha) of high and stable farmland in 5 years. Available online: http://yn.people.com.cn/n2/2016/0216/c372442-27740823.html (accessed on 16 June 2020).
- Xinhuanet. 2009-11-20. Yunnan will transform middle and low yield fields in mountainous areas vigorously. Available online: http://news.sohu.com/20091120/n268360212.shtml (accessed on 16 June 2020).
- Yunnannet. 2019-07-19. Yunnan promotes 870,600 mu (about 58,040 ha) of new upland rice varieties. Available online: http://society.yunnan.cn/system/2019/07/19/030332587.shtml (accessed on 16 June 2020).
- International Rice Research Institute (IRRI) and Ministry of Agriculture (MOA), People’ Republic of China. Summary of the International Workshop on Strategies for Sustainable Development of Agriculture Production Systems in the Highlands of the Greater Mekong Subregion (GMS) Countries (unpublished); Kunming, China, 2003.
- Wu, H.; Ding, S.; Pandey, S.; Tao, D. Assessing the Impact of Agricultural Technology Adoption on Farmers’ Well-being Using Propensity-Score Matching Analysis in Rural China. Asian Econ. J. 2010, 24, 141–160. [Google Scholar] [CrossRef]
- China News. Yunnan’s poverty ratio dropped from 14.03% to 1.32%. Available online: http://www.yn.chinanews.com/news/2020/0612/57455.html (accessed on 12 June 2020).
- People’s Network. The incidence of poverty in the country has dropped from 10.2% to 1.7% over the past 7 years. Available online: http://zj.people.com.cn/n2/2019/1018/c186327-33448790.html (accessed on 18 October 2019).
- Hu, F.; Tao, D.; Sacks, E.; Fu, B.Y.; Li, J.; Yang, Y.; McNally, K.; Khush, G.S.; Paterson, A.H.; Li, Z.K. Convergent evolution of perenniality in rice and sorghum. Proc. Natl. Acad. Sci. USA 2003, 100, 4050–4054. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Xu, P.; Yang, Y.; Hu, F.; Li, J.; Zhou, J. Studies on fertility in interspecific hybrids between Oryza sativa and O. glaberrima. Rice Genet. Newsl. 2003, 20, 71–73. [Google Scholar]
- Tao, D.; Xu, P.; Li, J.; Hu, F.; Yang, Y.; Zhou, J.; Tan, X.; Jones, M. Inheritance and mapping of male sterility restoration gene in upland japonica restorer lines. Euphytica 2004, 138, 247–254. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wu, H.T.; Tao, D.; Sushil, P.; Xu, P.; Hu, F.; Ding, S.; Wang, H.; Feng, L. Assessing the Effects of Agricultural Technology Adoption on Farmers’ Income Using Propensity Score Matching Method: Evidence from Upland Rice Farmers in Southwestern Yunnan. Sci. Agric. Sin. 2010, 43, 3667–3676. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Sunding, D.; Zilberman, D. The agricultural innovation process: Research and technology adoption in a changing agricultural sector. Handb. Agric. Econ. 2001, 18, 207–261. [Google Scholar]
- Doss, C.R. Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agric. Econ. 2006, 34, 207–219. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Microeconomics of Technology Adoption; Economic Growth Center Discussion Paper Series No.984; Yale University: New Haven, CT, USA, 2010; Available online: http://www.econ.yale.edu/growth_pdf/cdp984.pdf (accessed on 16 June 2020).
- Piesse, J.; Schimmelpfennig, D.; Thirtle, C. An error correction model of induced innovation in UK agriculture. Appl. Econ. 2011, 43, 4081–4094. [Google Scholar] [CrossRef]
- Shahidur, R.K.; Koolwal, G.B.; Samad, A.H. Handbook on Impact Evaluation: Quantitative Methods and Practices; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Caliendo, M.; Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef] [Green Version]
- Imbens, G.W. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econ. Stat. 2004, 86, 4–29. [Google Scholar] [CrossRef]
- Abebaw, D.; Fentie, Y.; Kassa, B. The impact of a food security program on household food consumption in Northwestern Ethiopia: A matching estimator approach. Food Policy 2010, 35, 286–293. [Google Scholar] [CrossRef]
- Dehejia, R.H.; Wahba, S. Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Moser, C.M.; Barrett, C.B. The complex dynamics of smallholder technology adoption: The case of SRI in Madagascar. Agric. Econ. 2006, 35, 373–388. [Google Scholar] [CrossRef]
- Johnson, M.E.; Masters, W.A.; Preckel, P.V. Diffusion and spillover of new technology: A heterogeneous-agent model for cassava in West Africa. Agric. Econ. 2006, 35, 119–129. [Google Scholar] [CrossRef]
- Basu, A.K.; Qaim, M. On the adoption of genetically modified seeds in developing countries and the optimal types of government intervention. Am. J. Agric. Econ. 2007, 89, 784–804. [Google Scholar] [CrossRef]
Prefecture | County | Rainfall (mm) | Village | Altitude (meters) | Distance to the Nearest Market (km) | No. of Samples |
---|---|---|---|---|---|---|
Honghe | Pingbian | 1650.2 | Cangfang | 1761 | 11 | 26 |
Lincang | Cangyuan | 1748.8 | Tuanjie | 1755 | 6 | 28 |
Pu’er | Lancang | 1643.4 | Fotang | 1814 | 5 | 18 |
- | - | - | Laomian | 1627 | 14 | 25 |
- | - | - | Xiaohuilong | 1385 | 3 | 36 |
- | - | - | Xiyun | 1389 | 7 | 33 |
- | Menglian | 1373.2 | Bansong | 1145 | 12 | 34 |
- | - | - | Guangsan | 1004 | 3 | 31 |
- | - | - | Hani | 1455 | 3 | 30 |
- | - | - | Laomianzhai | 1277 | 13 | 33 |
- | - | - | Mangnuo | 1027 | 8 | 23 |
Wenshan | Wenshan | 999.8 | Duobaiku | 1810 | 9 | 34 |
Xishuangbanna | Jinghong | 1211.1 | Xinzhai | 845.4 | 9 | 31 |
- | Menghai | 1933.1 | Laodong | 1491 | 40 | 20 |
- | - | - | Zhongzhai | 1563 | 26 | 22 |
- | Mengla | 1550.8 | Panshan | 755.7 | 10 | 24 |
Total | - | - | - | - | - | 448 |
County | Village | Percentage of Households Adopting IV (%) | Percentage of IV Area to Upland Rice Area (%) |
---|---|---|---|
Pingbian | Cangfang | 50 | 44 |
Cangyuan | Tuanjie | 15 | 13 |
Lancang | Fotang | 0 | 0 |
- | Laomian | 91 | 16 |
- | Xiaohuilong | 27 | 12 |
- | Xiyun | 38 | 27 |
Menglian | Bansong | 76 | 43 |
- | Guangsan | 97 | 58 |
- | Hani | 100 | 82 |
- | Laomianzhai | 94 | 35 |
- | Mangnuo | 87 | 74 |
Wenshan | Duobaiku | 59 | 53 |
Jinghong | Xinzhai | 97 | 97 |
Menghai | Laodong | 76 | 71 |
- | Zhongzhai | 0 | 0 |
Mengla | Panshan | 0 | 0 |
Total | - | 56 | 34 |
Non-adopters | Partial Adopters | Full Adopters | All | |
---|---|---|---|---|
Sample | 197 | 114 | 137 | 448 |
Human Capital | ||||
Household size (number of family members/hh) | 4.69 | 4.63 | 4.76 | 4.69 |
Labor (number of farm labor/hh) | 2.68 | 2.38 | 2.43 | 2.53 |
Rice area labor ratio (ha per farm labor) | 0.17 | 0.26 | 0.14 | 0.19 |
Physical Capital | ||||
Total land area (ha/hh) | 2.59 | 2.04 | 1.81 | 2.21 |
Upland area (ha/hh) | 1.73 | 1.67 | 1.19 | 1.55 |
Irrigated rice area (ha/hh) | 0.07 | 0.11 | 0.07 | 0.08 |
Upland Rice Production | ||||
Upland rice area (ha/hh) | 0.44 | 0.56 | 0.31 | 0.43 |
Share of upland rice area in upland area (%) | 39 | 39 | 34 | 38 |
Share of IV area in upland rice area (%) | 0 | 38 | 100 | 40 |
Yield of upland rice (t/ha) | 2.32 | 2.68 | 3.32 | 2.72 |
Upland rice production per household (ton) | 0.98 | 1.54 | 0.99 | 1.13 |
Household Cash Income (USD/hh) | 937 | 943 | 1276 | 1041 |
Sales of grains | 107 | 110 | 60 | 93 |
Sales of livestock | 227 | 196 | 229 | 220 |
Sales of cash crop | 419 | 453 | 819 | 549 |
Manual work | 64 | 33 | 91 | 64 |
Others | 120 | 151 | 77 | 116 |
Total Household Income (USD/hh) | 1204 | 1369 | 1546 | 1351 |
Traditional Variety | Improved Variety | |
---|---|---|
Yield (t/ha) | 2.63 | 3.42 |
Inputs | - | - |
Seed (kg/ha) | 178 | 110 |
Urea (kg/ha) | 152 | 217 |
Superphosphate fertilizer (kg/ha) | 156 | 159 |
Calcium magnesium phosphate (kg/ha) | 247 | 323 |
Compound fertilizer (kg/ha) | 13 | 35 |
Returns | - | - |
Value of output (USD/ha) | 564 | 733 |
Value of input (USD/ha) | 154 | 194 |
Seed input | 37 | 47 |
Fertilizer | 71 | 101 |
Herbicide | 40 | 40 |
Pesticide | 6 | 6 |
Net returns (USD/ha) | 410 | 539 |
Coefficients | t-Value | |
---|---|---|
Land labor ratio | −1.55 | −0.47 |
Share of terrace area in land area (%) | 0.37 *** | 2.91 |
Dummy for extension program | 12.91 ** | 2.53 |
County dummy | 20.21 *** | 4.26 |
Constant | 8.48 | 1.32 |
N | 113 | - |
Matching Algorithm | Average Effects (USD/household) |
---|---|
Total household income | - |
Nearest neighbor matching | 72 |
Radius matching | 102 |
Kernel-based matching | 86 |
Rice income | - |
Nearest neighbor matching | 48 |
Radius matching | 45 |
Kernel-based matching | 51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Pandey, S.; Feng, L. Econometric Analyses of Adoption and Household-Level Impacts of Improved Rice Varieties in the Uplands of Yunnan, China. Sustainability 2020, 12, 6873. https://doi.org/10.3390/su12176873
Wang H, Pandey S, Feng L. Econometric Analyses of Adoption and Household-Level Impacts of Improved Rice Varieties in the Uplands of Yunnan, China. Sustainability. 2020; 12(17):6873. https://doi.org/10.3390/su12176873
Chicago/Turabian StyleWang, Huaiyu, Sushil Pandey, and Lu Feng. 2020. "Econometric Analyses of Adoption and Household-Level Impacts of Improved Rice Varieties in the Uplands of Yunnan, China" Sustainability 12, no. 17: 6873. https://doi.org/10.3390/su12176873
APA StyleWang, H., Pandey, S., & Feng, L. (2020). Econometric Analyses of Adoption and Household-Level Impacts of Improved Rice Varieties in the Uplands of Yunnan, China. Sustainability, 12(17), 6873. https://doi.org/10.3390/su12176873