Assessment of the Use of Solar Desalination Distillers to Produce Fresh Water in Arid Areas
Abstract
:1. Introduction
1.1. Overview
1.2. Sites with Distillation Distillers
2. Analyses
2.1. Thermal Efficiency
2.2. Economics
2.3. Carbon Emissions
3. Results
3.1. Thermal Efficiency
3.2. Economics
3.3. Carbon Emissions
4. Conclusions
- Remote places;
- Salt water available;
- High solar irradiation;
- Population with low income;
- Population with poor skills;
- Off-grid places.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Area of the basin | m2 | |
Carbon dioxide equivalent emissions | ||
Specific heat | J kg−1 K−1 | |
Capital expenditure | € | |
Casflow | € | |
SolaIrradiation | W m−2 | |
Grehouse gas | ||
Inflion rate | % | |
IRR | Internal rate of return | % |
h | Convection coefficient | W m−2 K−1 |
hfg | Latent heat of evaporation | J kg−1 |
Lc | Characteristic length | m |
M | Mass | kg |
Mass flow rate | kg s−1 | |
NPV | Net Present Value | € |
n | Period | year |
OPEX | Operational Expenditure | € |
p | Pressure | mmHg |
PB | Payback | year |
PVC | Polyvinyl chloride | |
Q | Heat rate | W m−2 |
R | Revenue | € |
RO | Reverse osmosis | |
T | Temperature | K |
t | Time | s |
TCO | Total cost of ownership | € |
V | Wind velocity | m s−1 |
a | Atmosphere | |
b | Basin | |
c | Cover | |
conv | Convection | |
d | Distilled | |
evap | Evaporation | |
grd | Ground | |
m | Average | |
n | Period | year |
rad | Radiation | |
sk | Sky | |
w | Water | |
wb | Wet bulb |
Absorptivity | ||
Performance | ||
θ | Angle of incidence | |
Reflectivity | ||
σ | Stefan-Boltzmann constant | J m−2 s−1 K−4 |
Transmissivity |
References
- Belessiotis, V.; Kalogirou, S.; Delyannis, E. Thermal Solar Desalination: Methods and Systems, 1st ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Cooper, P.I. The absorption of radiation in solar stills. Sol. Energy 1969, 12, 333–349. [Google Scholar] [CrossRef]
- Kumar, K.V.; Bai, R.K. Performance study on solar still with enhanced condensation. Desalination 2008, 230, 51–61. [Google Scholar] [CrossRef]
- Phadatare, M.K.; Verma, S.K. Effect of cover materials on heat and mass transfer coefficients in a plastic solar still. Desalin. Water Treat. 2009, 2, 254–259. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Harding, J. Apparatus for solar distillation. Minutes Proc. Inst. Civ. Eng. 1883, 73, 284–288. [Google Scholar] [CrossRef]
- Telkes, M. Fresh water from sea water by solar distillation. Ind. Eng. Chem. 1953, 45, 1108–1114. [Google Scholar] [CrossRef]
- Lof, G.O.G.; Eibling, J.A.; Bloemer, J.W. Energy balances in solar distillers. AIChE J. 1961, 7, 641–649. [Google Scholar] [CrossRef]
- Bloemer, J.W.; Eibling, J.A.; Irwin, J.R. A practical basin-type solar still. Sol. Energy 1965, 9, 197–200. [Google Scholar] [CrossRef]
- Talbert, S.G.; Eibling, J.A. Manual on Solar Distillation of Saline Water; NTIS: Springfield, VA, USA, 1970. [Google Scholar]
- Hull, J.R. Solar ponds using ammonium salts. Sol. Energy 1986, 36, 551–558. [Google Scholar] [CrossRef]
- Hull, J.R.; Bushnell, D.L.; Sempsrote, D.G.; Pena, A. Ammonium sulfate solar pond: Observations from small-scale experiments. Sol. Energy 1989, 43, 57–64. [Google Scholar] [CrossRef]
- Nielsen, C.E. Salinity-gradient solar ponds. In Advances in Solar Energy; Böer, K.W., Ed.; Springer: Boston, MA, USA, 1988; Volume 4. [Google Scholar]
- Morse, R.N. The Development of a Solar Still for Australian Conditions; Institution of Engineers: Barton, Australia, 1967. [Google Scholar]
- Morse, R.N. The construction and installation of solar stills in Australia. Desalination 1968, 5, 82–89. [Google Scholar] [CrossRef]
- Morse, R.N.; Read, W.R.W. A rational basis for the engineering development of a solar still. Sol. Energy 1968, 12, 5–17. [Google Scholar] [CrossRef]
- Morse, R.N.; Read, W.R.W.; Trayford, R.S. Operating experiences with solar stills for water supply in Australia. Sol. Energy 1970, 13, 99–103. [Google Scholar] [CrossRef]
- Morse, R.N. The theory of solar still operation. In Proceedings of the UN Solar Distillation Panel Meeting, Palo Alto, CA, USA, 20–23 October 1968. [Google Scholar]
- Lawand, T. Engineering and economic evaluation of solar distillation for small communities. Presented at the Annual ASME Meeting, Los Angeles, CA, USA, 16–20 November 1969. [Google Scholar]
- Lawand, T. Systems for solar distillation. In Proceedings of the Appropriate Technologies for Semiarid Areas: Wind and Solar Energy for Water Supply, Berlin, Germany, 15–20 September 1975. [Google Scholar]
- Telkes, M. Solar Stills; Proceedings World Symposium on Applied Solar Energy: Phoenix, AZ, USA, 1956. [Google Scholar]
- Hirschmann, J. Evaporación solar y su aplicación práctica en Chile. Scientia 1968, 136, 16. [Google Scholar]
- Lof, G.O.G.; Hunter, J.A.; Sieder, E.N. Technical Cooperation on the Solar Distillation Development Program of Spain. In Distillation Digest; Tomalin, P.G., Ed.; Office of Saline Water: Washington, DC, USA, 1970; Volume 1–2, pp. 241–252. [Google Scholar]
- Bloemer, J.W.; Collins, R.A.; Eibling, J.A. Study and Field Evaluation of Solar Sea-Water Stills; United States. Department of Commerce. Office of Technical Services: Washington, DC, USA, 1961.
- Bloemer, J.W.; Irwin, J.R.; Eibling, J.A. ‘Second Two-Years’ Progress on Study and Field Evaluation of Solar Sea-Water Stills; Battelle Memorial Institute: Columbus, OH, USA, 1964. [Google Scholar]
- Eckstrom, R. Design and construction of the Symi still. Sun Work 1965, 10, 6–8. [Google Scholar]
- Delyannis, A. Solar stills provide an island’s inhabitants with water. Sun Work 1965, 10, 6. [Google Scholar]
- Eckstrom, R. New solar stills on Greek islands. Sun Work 1966, 11. [Google Scholar]
- Delyannis, A.; Delyannis, E.; Piperoglou, E. Solar distillation developments in Greece. Sun Work 1967, 12. [Google Scholar]
- Delyannis, A.; Piperoglou, E. The Patmos solar distillation plant. Sol. Energy 1968, 12, 113–115. [Google Scholar] [CrossRef]
- Datta, R.L.; Gomkale, S.D.; Ahmed, S.Y.; Datar, D.S.; Intensity, T.X.S.R. Evaporation of sea water in solar stills and its development for. In Proceedings of the First International Symposium on Water Desalination, Washington, DC, USA, 3–9 October 1965; Volume 2, p. 193. [Google Scholar]
- Ahmed, S.Y.; Gomkale, S.D.; Datta, R.L.; Datar, D.S. Scope and development of solar stills for water desalination in India. Desalination 1968, 5, 64–74. [Google Scholar] [CrossRef]
- Baum, V.A.; Bairamov, R. Prospects of solar stills in Turkmenia. Sol. Energy 1966, 10–11, 38–40. [Google Scholar] [CrossRef]
- Cooper, P.I.; Bairamov, R. The maximum efficiency of single-effect solar stills. Sol. Energy 1973, 15, 205–217. [Google Scholar] [CrossRef]
- Dunkle, R.V. Solar water distillation: The roof type still and a multiple effect diffusion still. In Proceedings of the International Heat Transfer Conference, Boulder, CO, USA, 28 August–1 September 1961; Volume 5, p. 895. [Google Scholar]
- Gerador de Preços Para Construção Civil. Cabo Verde. CYPE Ingenieros, S.A. Available online: http://www.caboverde.geradordeprecos.info/ (accessed on 17 July 2019).
- Chad: Inflation Rate from 1984 to 2024. Available online: https://www.statista.com/statistics/529342/inflation-rate-in-chad/ (accessed on 20 July 2019).
- Portugal: Inflation Rate from 1984 to 2024. Available online: https://www.statista.com/statistics/529342/inflation-rate-in-portugal/ (accessed on 20 July 2019).
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Relatório e Contas 2018. Available online: http://www.electra.cv/index.php/2014-05-20-15-47-04/relatorios-sarl/ (accessed on 20 October 2019).
- CO2 Emissions from Fuel Combustion 2018 (with 2016 Data). Available online: https://webstore.iea.org/co2-emissions-from-fuel-combustion-2018 (accessed on 20 October 2019).
- Repository of Free Climate Data for Building Performance Simulation. Available online: http://climate.onebuilding.org/ (accessed on 15 July 2019).
- Tarifas de Abastecimiento Almeria. Available online: https://www.aqualia.com/documents/373313/374060/Almer%C3%ADa_TARIFAS+ABASTECIMIENTO.pdf/d9a04334-9c2a-425c-924d-4866c7a10802/ (accessed on 17 October 2019).
- La Distribution d’eau Potable Dans la Ville de Nouakchott, Mauritanie. Analyse des Points de Vente d’eau. Available online: https://www.pseau.org/outils/ouvrages/gret_distribution_eau_potable_ville_nouakchott_analyse_points_d_eau.pdf (accessed on 17 October 2019).
- Global Water Intelligence. Available online: https://www.globalwaterintel.com/news/2017/31/egypt-to-slash-subsidies-in-water-and-wastewater?dm_i=36G3,IGWK,2MX9NG,1XJV0,1 (accessed on 17 October 2019).
- SEEN. Available online: https://www.seen-niger.com/fr/activites/relation-clientele/nos-tarifs (accessed on 17 October 2019).
- Chohin-Kuper, A.; Strosser, P. Water pricing in Europe and around the Mediterranean Sea: Issues and options. Presented at 4th EWA Brussels Conference, Brussels, Belgium, 8 November 2008. [Google Scholar]
- NIPA—National Investment Promotion Agency. Available online: http://www.djiboutinvest.com/index.php?option=com_content&view=article&id=289&Itemid= (accessed on 17 October 2019).
- Tarifário dos Serviços de Abastecimento de Águas, Saneamento de Águas Residuais e Gestão de Resíduos Urbanos do Município de Évora. 2019. Available online: http://www.cm-evora.pt/pt/servicos/aguas/Paginas/Tarif%C3%A1rios.aspx (accessed on 17 October 2019).
- UNHabitat. Available online: http://unhabitat.org/wpcontent/uploads/2015/12/Soci%C3%A9t%C3%A9%20Tchadienne%20des%20Eaux%20(Chad).pdf (accessed on 17 October 2019).
- Fixation des Tarifs de L’Eau Potable Applicables. Available online: http://www.creemali.ml/documents/TARIFS_EAU_2013.pdf (accessed on 17 October 2019).
Country | Sites | Construction Year | Basin Area (m2) | Production (L/day) | Daily Production Per Area (L/m2) | Reference |
---|---|---|---|---|---|---|
Australia | Muresk I | 1963 | 372 | 833 | 2.24 | [14,15,16] |
Muresk II | 1966 | 372 | 833 | 2.24 | [15,16,17,18] | |
Coober Pedy | 1966 | 3159 | 6359 | 2.01 | [15] | |
Caiguna | 1966 | 372 | 776 | 2.09 | [19] | |
Hamelin Pool | 1966 | 557 | 1211 | 2.17 | [10,20] | |
Griffith | 1967 | 413 | 908 | 2.20 | [10,20] | |
Cabo Verde | Santa Maria | 1965 | 743 | 2120 | 2.85 | [10,20] |
Caribbean | Petit St. Vincente | 1967 | 1709 | 4921 | 2.88 | [19] |
Haiti | 1969 | 223 | 757 | 3.39 | [10,20] | |
Chile | Las Salinas | 1872 | 4459 | 14,763 | 3.31 | [6,21] |
Quillagua | 1968 | 100 | 401 | 4.01 | [22] | |
Spain | Las Marinas | 1966 | 869 | 2574 | 2.96 | [23] |
USA | Daytona Beach 1 | 1959 | 228 | 530 | 2.32 | [24] |
Daytona Beach 2 | 1959 | 216 | 379 | 1.75 | [24,25] | |
Daytona Beach 3 | 1961 | 246 | 568 | 2.31 | [25] | |
Daytona Beach 4 | 1963 | 149 | 606 | 4.07 | [10,20] | |
Greece | Symi | 1964 | 2687 | 7571 | 2.82 | [26,27] |
Aegina | 1965 | 1490 | 4240 | 2.84 | [28] | |
Salamis | 1965 | 388 | 1098 | 2.83 | [20] | |
Patmos | 1967 | 8640 | 26,119 | 3.02 | [29,30] | |
Kimolos | 1968 | 2508 | 7571 | 3.02 | [20] | |
Nisiros | 1969 | 2044 | 6057 | 2.96 | [20] | |
India | Bhavnagar | 1965 | 377 | 833 | 2.21 | [31,32] |
Mexico | California | 1969 | 95 | 379 | 3.99 | [20] |
Tunisia | Chakmou | 1967 | 439 | 530 | 1.21 | [20] |
Mahdia | 1968 | 1301 | 4164 | 3.20 | [20] | |
USSR | Turkmenistan | 1964 | 599 | 1628 | 2.72 | [33] |
Sites | Country | Latitude (°) | Longitude (°) | Altitude (m) | Annual (°C) | G Annual (KWh m−2 y−1) |
---|---|---|---|---|---|---|
Al Fashir | Sudan | 13.6 | 25.3 | 729 | 25.0 | 2482 |
Almeria | Spain | 36.8 | −2.3 | 21 | 18.7 | 1880 |
Atar | Mauritania | 20.5 | −13.0 | 231 | 27.0 | 2404 |
Abu Rudeis | Egypt | 28.9 | 33.1 | 8 | 23.7 | 2223 |
Bilma | Niger | 18.7 | 12.9 | 357 | 26.4 | 2428 |
Dakha | Western Sahara | 23.7 | −15.9 | 10 | 19.7 | 2005 |
Dikhil | Djibouti | 11.1 | 42.3 | 490 | 25.3 | 2584 |
Évora | Portugal | 38.5 | −7.8 | 246 | 16.3 | 1849 |
Faya Largeau | Chad | 17.9 | 19.1 | 235 | 24.4 | 2456 |
Malakal | South Sudan | 9.5 | 31.6 | 394 | 26.7 | 2351 |
Massawa | Eritrea | 15.6 | 39.4 | 10 | 29.3 | 2184 |
Mekele | Ethiopia | 13.4 | 39.5 | 2254 | 16.5 | 2386 |
Mogadishu | Somalia | 2.0 | 45.3 | 3 | 27.0 | 2239 |
Santiago | Cabo Verde | 14.9 | −23.5 | 95 | 24.6 | 2245 |
St. Louis | Senegal | 16.0 | −16.4 | 2.7 | 25.19 | 2174 |
Tessalit | Mali | 20.2 | 0.97 | 494 | 27.8 | 2440 |
Angle of Incidence, θ | 0° | 30° | 45° | 60° |
---|---|---|---|---|
Glass cover | ||||
Absorptivity, α | 5 | 5 | 5 | 5 |
Transmissivity, τ | 90 | 90 | 89 | 85 |
Reflectivity, ρ | 5 | 5 | 6 | 10 |
Water in the basin | ||||
Absorptivity, α | 30 | 30 | 30 | 30 |
Transmissivity, τ | 68 | 68 | 67 | 64 |
Reflectivity, ρ | 2 | 2 | 3 | 6 |
Basin bottom (liner) | ||||
Absorptivity, α | 95 | 95 | 95 | 95 |
Transmissivity, τ | 0 | 0 | 0 | 0 |
Reflectivity, ρ | 5 | 5 | 5 | 5 |
Sites | Emissions (Mton) | Electricity Generated (TWh) | Specific Emissions of /kWh | Ref. |
---|---|---|---|---|
Al Fashir | 6.2 | 15.5 | 0.400 | [41] |
Almeria | 66.7 | 273.4 | 0.243 | [41] |
Atar | - | - | 0.625 1 | - |
Abu Rudeis | 89.3 | 188.2 | 0.474 | [41] |
Bilma | 0.5 | 0.6 | 0.833 | [41] |
Dakha | 21.6 | 32.8 | 0.658 | [41] |
Dikhil | - | - | 1.000 2 | - |
Évora | 18.1 | 57.7 | 0.314 | [41] |
Faya Largeau | - | - | 0.400 3 | - |
Malakal | 0.5 | 0.5 | 1.000 | [41] |
Massawa | 0.4 | 0.4 | 1.000 | [41] |
Mekele | 0 | 13.9 | 0 | [41] |
Mogadishu | - | - | 1.000 2 | - |
Santiago | 0.2 | 0.4 | 0.490 | [40] |
St. Louis | 3.0 | 4.8 | 0.625 | [41] |
Tessalit | - | - | 0.625 1 | - |
Location | Average Cost of Water (€/m3) | Water Annual Production (L/m2) | TCO 20 Years (€/m2) | NPV 20 Years (€/m2) | IRR (%) | Payback (Years) |
---|---|---|---|---|---|---|
Al Fashir | 0.766 1 | 642.6 | 270.1 | −234.40 | - | 369 |
Almeria | 0.699 [43] | 420.1 | −247.30 | - | 619 | |
Atar | 5.952 2 [44] | 644.4 | −177.85 | −22.1 | 47 | |
Abu Rudeis | 0.167 [45] | 545.4 | −251.27 | - | 1996 | |
Bilma | 0.218 [46] | 651.4 | −250.27 | - | 1280 | |
Dakha | 0.460 [47] | 457.9 | −248.65 | - | 810 | |
Dikhil | 0.448 [48] | 680.9 | −247.07 | - | 596 | |
Évora | 0.507 [49] | 414.4 | −248.93 | - | 865 | |
Faya Largeau | 0.766 [50] | 695.8 | −242.60 | - | 341 | |
Malakal | 0.766 1 | 619.4 | −243.75 | - | 383 | |
Massawa | 0.448 3 | 680.9 | −247.07 | - | 596 | |
Mekele | 0.448 3 | 560.5 | −248.13 | - | 724 | |
Mogadishu | 0.448 3 | 583.0 | −247.93 | - | 696 | |
Santiago | 4.23 4 [40] | 562.5 | −206.40 | - | 76 | |
St. Louis | 5.952 5 | 551.6 | −188.67 | - | 55 | |
Tessalit | 0.207 [51] | 683.0 | −250.28 | - | 1286 |
Location | Water Annual Production (L/m2) | RO Desalinization Energy Consumption (kWh/m3) | GHG Avoid 20 Years |
---|---|---|---|
Al Fashir | 642.6 | 3909 | 20.1 |
Almeria | 420.1 | 8.0 | |
Atar | 644.4 | 31.5 | |
Abu Rudeis | 545.4 | 20.2 | |
Bilma | 651.4 | 42.4 | |
Dakha | 457.9 | 23.6 | |
Dikhil | 680.9 | 53.2 | |
Évora | 414.4 | 10.2 | |
Faya Largeau | 695.8 | 21.8 | |
Malakal | 619.4 | 48.4 | |
Massawa | 680.9 | 53.2 | |
Mekele | 560.5 | 0 | |
Mogadishu | 583.0 | 45.6 | |
Santiago | 562.5 | 21.5 | |
St. Louis | 551.6 | 27.0 | |
Tessalit | 683.0 | 33.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, J.; Baptista, A.; Pinto, G.; Ribeiro, L.; Mariano, H. Assessment of the Use of Solar Desalination Distillers to Produce Fresh Water in Arid Areas. Sustainability 2020, 12, 53. https://doi.org/10.3390/su12010053
Monteiro J, Baptista A, Pinto G, Ribeiro L, Mariano H. Assessment of the Use of Solar Desalination Distillers to Produce Fresh Water in Arid Areas. Sustainability. 2020; 12(1):53. https://doi.org/10.3390/su12010053
Chicago/Turabian StyleMonteiro, Joaquim, Andresa Baptista, Gustavo Pinto, Leonardo Ribeiro, and Hélder Mariano. 2020. "Assessment of the Use of Solar Desalination Distillers to Produce Fresh Water in Arid Areas" Sustainability 12, no. 1: 53. https://doi.org/10.3390/su12010053
APA StyleMonteiro, J., Baptista, A., Pinto, G., Ribeiro, L., & Mariano, H. (2020). Assessment of the Use of Solar Desalination Distillers to Produce Fresh Water in Arid Areas. Sustainability, 12(1), 53. https://doi.org/10.3390/su12010053