Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. ET0 Calculation Method
2.3.2. Mann–Kendall Trend Test
2.3.3. Wavelet Transform Coherence and Contribution Rate Analysis
3. Results
3.1. Changes in the Annual and Seasonal ET0 of Different Topographic Regions
3.2. Spatial Distribution of Et0 in Different Terrain Regions and Seasons
3.3. Spatial Variation of the Trends of Annual and Seasonal Et0 Series—MK Tests
3.4. Wavelet Transform Coherence of Et0 and the Large-Scale Circulation Patterns
4. Discussion
4.1. Relationships between Regional Et0 and Climatic Factors
4.2. Comparison with Other Study Areas
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, M.W.; Zhao, G.J.; Mu, X.M.; An, Z.F.; Gao, P.; Sun, W.Y. Spatial and temporal variations of potential evapotranspiration on the Loess Plateau during 1959–2015. Arid Reg. Geogr. 2017, 40, 997–1004. (In Chinese) [Google Scholar]
- Liu, W.; Cao, M.M.; Qiu, H.J.; Guo, S.; Li, R. Spatial and temporal change of the potential evapotranspiration in Weihe River Basin: A case study in Guanzhong Area. Sci. Geogr. Sin. 2014, 34, 1145–1152. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J. A faster water cycle. Science 2011, 332, 430–431. [Google Scholar] [CrossRef]
- Yang, Z.S.; Zhang, Q.; Hao, X.C.E. Characteristics of surface evapotranspiration and its response to precipitation in Loess Plateau from 1982 to 2013. In Proceedings of the Annual Meeting of the China Meteorological Society Arid Land Surface Processes and Climate Change in S5, Tianjin, China, 18 May 2015. [Google Scholar]
- Durack, P.J.; Wijffecs, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Keisling, B.A.; Castañeda, I.S.; Brighamgrette, J. Hydrological and temperature change in Arctic Siberia during the intensification of Northern Hemisphere Glaciation. Earth PlanetaryScienceLetters. 2017, 457, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Lowe, J.A.; Challinor, A.J.; Osborn, T.J. Global and regional impacts of climate change at different levels of global temperature increase. Clim. Chang. 2019, 155, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.Y.; Li, H.Y.; Zhang, Q.T.; Chen, W.; Liang, X.J.; Li, X.Z. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Burt, P. Climate and Territorial Suitability for the Vineyards Developed Using GIS Techniques. In Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism: Advances and Applications for Sustainable Development in Environmental Sciences and Agroforestry Research; Springer: Cham, Switzerland, 2019; pp. 11–13. [Google Scholar]
- Song, N.; Sun, J.S.; Wang, J.L.; Chen, Z.F.; Qiang, X.M.; Liu, Z.G. Analysis of difference in crop coefficients based on modified Penman and Penman-Monteith equations. Trans. Chin. Soc. Agric.Eng. 2012, 29, 88–97. [Google Scholar]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Zhao, L.L.; Wang, Z.G.; Xia, J.; Chen, X.; Qin, N.X. Improved Priestley-Taylor Method and its application in complementary relationship evapotranspiration model. Prog. Geogr. 2011, 30, 805–810. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper 56; Food and Agricultural Organization: Rome, Italy, 1998. [Google Scholar]
- Sun, S.L.; Chen, H.S.; Sun, G.; Ju, W.M.; Wang, G.J.; Li, X.; Yan, G.X.; Gao, C.J.; Huang, J.; Zhang, F.M. Attributing the changes in reference evapotranspiration in Southwestern China using a new separation method. J. Hydrometeorol. 2017, 18, 777–798. [Google Scholar] [CrossRef]
- Tang, R.L.; Li, Z.L.; Sun, X.M.; Bi, Y.Y. Temporal up scaling of instantaneous evapotranspiration on clear-sky days using the constant reference evaporative fraction method with fixed or variable surface resistances at two cropland sites. J. Geophys. Res. Atmos. 2017, 122, 784–801. [Google Scholar] [CrossRef]
- Abtew, W.; Obeysekera, J.; Iricanin, N. Pan evaporation and potential evapotranspiration trends in South Florida. Hydrol. Process. 2015, 25, 958–969. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, T.B.; Yi, G.H.; Li, J.J.; Bie, X.J.; Liu, D.; Luo, L.L. Spatio-temporal characteristics of evapotranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014. Acta Geogr. Sin. 2018, 73, 2117–2134. [Google Scholar]
- Zhou, B.R.; Li, F.X.; Xiao, H.B.; Hu, A.J.; Yan, L.D. Characteristics and climate explanation of spatial distribution and temporal variation of potential evapotranspiration in Headwaters of the Three Rivers. J. Nat. Resour. 2014, 29, 2068–2077. [Google Scholar]
- Piticar, A.; Mihăilă, D.; Lazurca, L.G.; Bistricean, P.I.; Puţuntică, A.; Briciu, A.E. Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova. Theor. Appl. Climatol. 2016, 124, 1133–1144. [Google Scholar] [CrossRef]
- Danlu, G.; Seth, W.; Maier, H.R. Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones. Hydrol. Earth Syst. Sci. 2017, 21, 2107–2126. [Google Scholar]
- Mohammad, V. Analysis of potential evapotranspiration using limited weather data. Appl. Water Sci. 2017, 7, 187–197. [Google Scholar]
- Swapnil, S.V.; Rahul, N.; Bimal, K.B.; Prashant, K. Development of real-time reference evapotranspiration at the regional scale using satellite-based observations. Int. J. Remote Sens. 2016, 37, 6108–6126. [Google Scholar]
- Liu, P.X.; Zhuoma, L.C. Spatial and temporal variation of potential evapotranspiration in Gansu province from 1960 to 2008 and its influencing factors. J. Nat. Resour. 2012, 27, 1561–1571. [Google Scholar]
- Zhu, G.F.; He, Y.Q.; Pu, T.; Li, Z.X.; Wang, X.F.; Jia, W.X.; Xin, H.J. Spatial distribution and temporal trends in potential evapotranspiration over Hengduan Mountains region from 1960 to 2009. Acta Geogr. Sin. 2012, 66, 905–916. [Google Scholar] [CrossRef]
- Zhang, L.X.; Zhang, W.X.; Zhou, T.J.; Wu, B.E. Assessment of the decadal prediction skill on global land summer monsoon precipitation in the coupled models of Ensembles. Adv. Earth Sci. 2017, 32, 409–419. [Google Scholar]
- Gao, G.; Chen, D.L.; Ren, G.Y.; Chen, Y.; Liao, Y.M.E. Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J. Geogr. Sci. 2006, 16, 3–12. [Google Scholar] [CrossRef]
- Tang, J.; Cao, H.Q.; Chen, J. Changes of hydro-meteorological factors and the relationships with large-scale circulation factors in the source region of the Yangtze River. J. Nat. Resour. 2018, 33, 122–134. [Google Scholar]
- Wang, T.T.; Sun, F.B.; Zhang, J.; Liu, W.B.; Wang, H. Anew method to attribute changes of pan evaporation: The experimental detrending approach. Acta Geogr. Sin. 2018, 73, 2064–2074. [Google Scholar]
- Gong, D.E.; Wang, S.W. Influence of atmospheric oscillations on northern hemispheric temperature. Geogr. Res. 1999, 18, 31–38. [Google Scholar]
- Li, P.; Huang, S.Z.; Huang, Q.; Ma, L.; Wu, H.S.; Luan, J.K. Study on the evolution characteristics and driving forces of rainfall structure in Datong River Basin. J. Nat. Resour. 2018, 33, 1588–1598. [Google Scholar]
- Yao, Y.J.; Zhao, S.H.; Zhang, Y.H.; Jia, K.; Liu, M. Spatial and decadal variations in potential evapotranspiration of China based on reanalysis datasets during 1982–2010. Atmosphere. 2014, 5, 737–754. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Zhang, B.; Dai, S.P.; Wang, H.J.; Guo, L.X.; Kang, S.Y. Analysis of spatial distributions and temporal trends in potential evaporation over Hexi Areas from1960 to2008. Resour. Sci. 2010, 32, 139–148. [Google Scholar]
- Zhou, B.R.; Li, F.X.; Xaio, H.B.; Hu, A.J.; Yan, L.D. Spatial and temporal differentiation and climatic attribution of potential evapotranspiration in sanjiangyuan area. J. Nat. Resour. 2014, 29, 2068–2077. [Google Scholar]
- Zhao, Y.F.; Zou, X.Q.; Zhang, J.X.; Cao, L.G.; Xu, X.W.H.; Zhang, K.X.; Chen, Y.Y. Spatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961–2012. Quat. Int. 2014, 349. [Google Scholar] [CrossRef]
- Tingting, N.; Li, Z.; Liu, W.Z.; Han, X.Y. Evolution of potential evapotranspiration in the northern Loess Plateau of China: Recent trends and climatic drivers. Int. J. Climatol. 2016, 36, 4019–4028. [Google Scholar]
- Zhang, X.P.; Li, Z.Q.; Wang, M.B.; Wang, X.G. Classification and ordination of grassland landscape in the Shanxi Plateau. Acta Ecol. Sin. 2014, 34, 3386–3395. [Google Scholar]
- Cheng, P. Vegetation Coverage Variations and Its Mechanism Based on Remotely Sensed Technology on Shanxi Plateau; Taiyuan University of Technology: Taiyuan, China, 2016. [Google Scholar]
- Fu, B.J.; Liu, Y.; Lv, Y.H.; He, C.S.; Zeng, Y.A.; Wu, B.F. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Sun, S.K.; Wu, P.; Wang, Y.B.; Zhao, X.N.; Liu, J.; Zhang, X.H. Impacts of climate change on water footprint of spring wheat production: The case of an irrigation district in China. Span. J. Agric. Res. 2012, 10, N4. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.H.; Deng, L.J. Analysis on precipitation trend in arid regions based on nonparametric verification methods of Mann-Kendall and spearman’s rho. Northwest Hydropower 2014, 4, 1–4. [Google Scholar]
- Yu, D.D.; Zhang, R.; Hong, M.; Liu, K.F.; Wang, H.Z. Correcation analysis between the west Pacific subtropical high and the east Asian summer monsoon system based on cross wavelet and wavelet coherence. J. Nanjing Inst. Meteorol. 2007, 30, 755–769. [Google Scholar]
- Hudgins, L.; Friehe, C.; Mayer, M. Wavelet transforms and atmospheric turbulence. APS Phys. Rev. 1993, 71, 3279–3282. [Google Scholar]
- Labat, D.; Rachid, A.; Mangin, A. Wavelet analysis in Karstic hydrology. 2nd part: Rainfall-runoff cross wavelet analysis. C. R. Acad. Sci. Ser. IIA Earth Planet. Sci. 1999, 329, 881–887. [Google Scholar]
- Huang, H.P.; Han, Y.P.; Cao, M.M.; Song, J.X.; Xiao, H.; Cheng, W.L. Spatiotemporal characteristics of evapotranspiration paradox and impact factors in China in the period of 1960–2013. Adv. Meteorol. 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Feng, Q.; Liu, W.; Wang, T.T.; Gao, Y.; Wang, Y.M.; Cheng, A.F.; Li, J.G.; Liu, L. Spatial and temporal trend of potential evapotranspiration and related driving forces in Southwestern China, during 1961–2009. Quat. Int. 2014, 336, 127–144. [Google Scholar]
- Zuo, D.P. Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River basin, China. Hydrol. Process. 2012, 26, 1149–1160. [Google Scholar] [CrossRef]
- Wang, R.; Chen, A.J.; He, X.G. Analysis on spatiotemporal variability of monthly precipitation and its lag correlation with AO and NAO in Yangtze River Basin. J. Meteorol. Sci. 2018, 38, 730–738. [Google Scholar]
- Xu, Y.; Wu, Y.F.; Xu, G. Variation of reference evapotranspiration and its teleconnection with multiple large-scale climate oscillations in the Yangtze River Delta, China. Int. J. Climatol. 2019, 39, 2630–2645. [Google Scholar] [CrossRef]
Study Areas | Altitude (m) | T (°C) | RH (%) | SD | WS (m/s) | ET0 (mm) |
---|---|---|---|---|---|---|
CLP | 1224 | 8.76 | 58 | 7.12 | 2.99 | 1074.06 |
MR region | 1970 | 5.88 | 61 | 6.98 | 2.67 | 936.86 |
VR region | 891 | 9.99 | 58 | 7.04 | 2.16 | 1085.92 |
HR region | 1098 | 9.33 | 56 | 7.32 | 2.46 | 1069.19 |
WS | T | Tmax | Tmin | SD | RH | |
---|---|---|---|---|---|---|
CLP | −0.363 ** | 0.605 ** | 0.717 ** | 0.416 ** | 0.303 * | 0.757 ** |
MR | −0.31 * | 0.69 ** | 0.773 ** | 0.603 ** | 0.175 | −0.69 ** |
VR | −0.326 * | 0.749 ** | 0.84 ** | 0.579 ** | 0.08 | −0.709 ** |
HR | −0.489 ** | 0.61 ** | 0.703 ** | 0.442 ** | 0.137 | −0.713 ** |
WS | T | Tmax | Tmin | SD | RH | |
---|---|---|---|---|---|---|
CLP | 7 | 42 | 13 | 23 | 7 | 8 |
MR | 1 | 40 | 26 | 26 | 4 | 4 |
VR | 7 | 39 | 10 | 28 | 1 | 15 |
HR | 1 | 11 | 39 | 17 | 4 | 28 |
Study Area | Time Period | Trends | Abrupt Change | Sources |
---|---|---|---|---|
Northwest China | 1958–2008 | decrease | 1978 | [32] |
Southwest China | 1961–2009 | increase | 1985 | [46] |
Wei River Basin, China | 1959–2008 | increase | 1993 | [47] |
Yangtze River, China | 1960–2011 | increase | 2000 | [48,49] |
Whole of China | 1960–2013 | decrease | 1993 | [45] |
CLP, China | 1960–2017 | increase | 1997 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Zheng, Z.; Chen, W.; Wang, Y. Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017. Sustainability 2020, 12, 354. https://doi.org/10.3390/su12010354
Sun C, Zheng Z, Chen W, Wang Y. Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017. Sustainability. 2020; 12(1):354. https://doi.org/10.3390/su12010354
Chicago/Turabian StyleSun, Congjian, Zhenjing Zheng, Wei Chen, and Yuyang Wang. 2020. "Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017" Sustainability 12, no. 1: 354. https://doi.org/10.3390/su12010354
APA StyleSun, C., Zheng, Z., Chen, W., & Wang, Y. (2020). Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017. Sustainability, 12(1), 354. https://doi.org/10.3390/su12010354