Long-Term Effects of Anthropogenic Factors on Nonpoint Source Pollution in the Upper Reaches of the Yangtze River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Watershed Description
2.2. Data Collection and Preparation
2.3. Methods
2.3.1. The Improved Export Coefficient Model
2.3.2. The Nutrient Losses Empirical Mode
3. Results and Discussion
3.1. Temporal Variation of Anthropogenic Effects on NPS Pollutant Loads
3.2. Contribution Rates of Anthropogenic Factors to Total NPS Pollutant Load
3.3. Temporal Variation of Anthropogenic Effects on Load Intensities
3.4. Effects of Various Anthropogenic Factors on NPS Pollution
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Liu, X.; Peng, W.; Dong, F.; Huang, Z.; Wang, R. Non-point source nitrogen and phosphorus assessment and management plan with an improved method in data-poor regions. Water 2017, 10, 17. [Google Scholar] [CrossRef]
- Ding, X.W.; Hou, B.D.; Xue, Y.; Jiang, G.H. Long-term effects of ecological factors on nonpoint source pollution in the upper reach of the Yangtze river. J. Environ. Inform. 2017, 30, 17–28. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Z.; Yan, T.; Yang, Y. Source identification and impact of landscape pattern on riverine nitrogen pollution in a typical urbanized watershed, Beijing, china. Sci. Total Environ. 2018, 628, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Liu, L.; Ye, J.; Ren, G.; Zhuo, D.; Qi, X. Assessing the effects of rural livelihood transition on non-point source pollution: A coupled abm-iecm model. Environ. Sci. Pollut. Res. 2017, 24, 12899–12917. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, J.; Shen, R.; Fu, B. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services. Sci. Total Environ. 2017, 607–608, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wu, Z.; Ma, R.; Su, Z. Detection of sensitive soil properties related to non-point phosphorus pollution by integrated models of sedd and pload. Ecol. Indic. 2016, 60, 483–494. [Google Scholar] [CrossRef]
- Wang, J.; Shao, J.; Wang, D.; Ni, J.; Xie, D. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the three gorges reservoir region-based on the improved export coefficient model. Environ. Sci. Proc. Impacts 2015, 17, 1976–1989. [Google Scholar] [CrossRef]
- Mijke, V.O.; Maarten, K.; Tom, B.; Gertjan, G.; Hans, M. Combined effects of climate change and dam construction on riverine ecosystems. Ecol. Eng. 2018, 120, 329–344. [Google Scholar]
- Fan, Y.R.; Huang, W.W.; Huang, G.H.; Huang, K.; Li, Y.P.; Kong, X.M. Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the three gorges reservoir area, China. Theor. Appl. Climatol. 2016, 125, 381–397. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Zhu, C.; He, Q. How have the river discharges and sediment loads changed in the Changjiang river basin downstream of the three gorges dam? J. Hydrol. 2018, 560, 259–274. [Google Scholar] [CrossRef]
- Zeng, X.T.; Li, Y.P.; Huang, G.H.; Liu, J. Modeling water trading under uncertainty for supporting water resources management in an arid region. J. Water Res. Plan Manag. 2016, 142, 04015058. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan plateau from 2000 to 2012. Ecol. Eng. 2016, 92, 251–259. [Google Scholar] [CrossRef]
- Wang, X.; Hao, F.; Cheng, H. Estimating non-point source pollutant loads for the large-scale basin of the Yangtze river in China. Environ. Earth Sci. 2011, 63, 1079–1092. [Google Scholar] [CrossRef]
- Ouyang, W.; Hao, F.H.; Wang, X.L. Nonpoint Source Pollution Responses Simulation for Conversion Cropland to Forest in Mountains by SWAT in China. Environ. Manag. 2008, 41, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Long, T.Y.; Liu, X. Simulation of soil loss processes based on rainfall runoff and the time factor of governance in the Jialing River Watershed, China. Environ. Monit. Assess. 2012, 184, 3731–3748. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S.; Singh, V.P. Determination of runoff and sediment yield from a small watershed in sub-humid subtropics using the HSPF model. Hydrol. Process. 2007, 21, 3035–3045. [Google Scholar] [CrossRef]
- Su, J.; Du, X.; Li, X.; Wang, X.; Li, W.; Zhang, W. Development and application of watershed-scale indicator to quantify non-point source p losses in semi-humid and semi-arid watershed, china. Ecol. Indic. 2016, 63, 374–385. [Google Scholar] [CrossRef]
- Johnes, P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.J.; Li, W.J.; Mu, L.; Jin, Z.W. Coupled hydrodynamic and water quality simulation of algal bloom in the Three Gorges Reservoir, China. Ecol. Eng. 2018, 119, 97–108. [Google Scholar] [CrossRef]
- Wilkinson, S.N.; Dougall, C.; Kinsey-Henderson, A.E.; Searle, R.D.; Ellis, R.J.; Bartley, R. Development of a time-stepping sediment budget model for assessing land use impacts in large river basins. Sci. Total Environ. 2014, 468–469, 1210–1224. [Google Scholar] [CrossRef]
- Wang, C.; Dai, S.B.; Ran, L.S.; Jiang, L.; Li, W.T. Contribution of river mouth reach to sediment load of the Yangtze river. Adv. Meteorol. 2015, 2015, 415058. [Google Scholar] [CrossRef]
- Ding, X.W.; Shen, Z.Y.; Liu, R.M.; Chen, L.; Lin, M. Effects of ecological factors and human activities on nonpoint source pollution in the upper reach of the Yangtze river and its management strategies. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 691–721. [Google Scholar] [CrossRef]
- Huang, L.; Zhong, M.; Gan, Q.; Liu, Y.; Huang, L.; Zhong, M. A novel calendar-based method for visualizing water quality change: The case of the Yangtze river 2006–2015. Water 2017, 9, 708. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Zeng, X.; Gao, C.; Jiang, T. Impacts of climate change on streamflow in the upper Yangtze river basin. Clim. Chang. 2017, 141, 533–546. [Google Scholar] [CrossRef]
- Deng, F.; Lin, T.; Zhao, Y.; Yuan, Y. Zoning and analysis of control units for water pollution control in the Yangtze river basin, china. Sustainability 2017, 9, 1374. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Tang, Z. Multi-temporal scale changes of streamflow and sediment discharge in the headwaters of yellow river and Yangtze river on the Tibetan plateau, china. Ecol. Eng. 2017, 102, 240–254. [Google Scholar] [CrossRef]
- Guo, H.; Chen, X.; Hydrology, B.O. Spatial contribution and cause analysis for runoff decreasing in the upstream of Yangtze river. J. Water Res. 2017, 6, 309–316. [Google Scholar]
- Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J.; Liu, X. Drought evaluation using the grace terrestrial water storage deficit over the Yangtze river basin, china. Sci. Total Environ. 2018, 634, 727–738. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, S.; Li, P.; Li, Z.; Gao, H.; Yu, K. Soil total nitrogen sources on dammed farmland under the condition of ecological construction in a small watershed on the loess plateau, china. Ecol. Eng. 2017, 121, 19–25. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Wu, Y. Maintaining the connected river-lake relationship in the middle Yangtze river reaches after completion of the three gorges project. Int. J. Sediment Res. 2017, 4, 487–494. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, L.; Ding, X.; Hong, Q.; Liu, R. Long-term variation (1960–2003) and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the Yangtze river. J. Hazard. Mater. 2013, 252–253, 45–56. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Yang, S.; Huang, G.; Zhao, S.; Zhang, P.; Yao, Y. Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: Equilibrium and kinetic adsorption studies. Fuel 2016, 165, 264–271. [Google Scholar] [CrossRef]
- Zhuo, D.; Liu, L.; Yu, H.; Yuan, C. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data. Environ. Sci. Pollut. Res. 2018, 25, 1683–1705. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Shen, Z.; Hong, Q.; Yang, Z.; Wu, X.; Liu, R. Development and test of the export coefficient model in the upper reach of the Yangtze river. J. Hydrol. 2010, 383, 233–244. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Goncalves, J.A. Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application. Environ. Monit. Assess. 2016, 188, 351. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gu, S.; Tan, X. Water quality in the upper Han River basin, China: The impacts of land use/land cover in riparian buffer zone. J. Hazard. Mater. 2009, 165, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yu, M.; Lu, G. Impacts of the Gezhouba and Three Gorges reservoirs on the sediment regime in the Yangtze river, China. J. Hydrol. 2011, 403, 224–233. [Google Scholar] [CrossRef]
- Siciliano, G. Urbanization strategies, rural development and land use changes in China: A multiple-level integrated assessment. Land Use Policy 2012, 29, 165–178. [Google Scholar] [CrossRef]
- Zhang, N.; He, H.M.; Zhang, S.F.; Jiang, X.H. Influence of Reservoir Operation in the Upper Reaches of the Yangtze river (China) on the Inflow and Outflow Regime of the TGR-based on the Improved SWAT Model. Water Resour. Manag. 2012, 26, 691–705. [Google Scholar] [CrossRef]
- Bieger, K.; Georg, H.; Fohrer, N. Simulation of Streamflow and Sediment with the Soil and Water Assessment Tool in a Data Scarce Catchment in the Three Gorges Region, China. J. Environ. Qual. 2012, 11, 37–45. [Google Scholar] [CrossRef]
Data Type | Scale | Data Description | Data Source |
---|---|---|---|
Digital elevation model (DEM) | 1:250,000 | Elevation, watershed classification, water system generation and hydrological process simulation | Institute of Geographical and Natural Resources Research, Chinese Academy of Sciences; National Geomatics Center of China |
Topographic map data | 1:1,000,000 | Basin boundary | National Geomatics Center of China |
Land use maps | 1:100,000 | Land use classifications (1960–2003) | Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences |
Soil map | 1:1,000,000 | Soil physical and chemical properties | Institute of Soil Science, Chinese Academy of Sciences |
Meteorological data | 173 stations | Weather data (1950–2003) including rainfall, temperature, relative humidity and solar radiation | China Meteorological Administration |
Social and economic data | Data for all provinces in the upper reaches of the Yangtze river (URYR) | Data (1960–2003) regarding population, livestock breeding amount, planting, harvest and agricultural cultivation | China Agriculture Yearbook; China Statistic Yearbook |
Water quality and sediment data | 11 stations | Sediment (1960–2003); nitrogen and phosphorus (1991–2000) | China Environment Yearbook (1989–2000); Bulletin of Yangtze River Sediment (1960–2003) |
Area | Non-Natural Land (104 km2) | Natural Land (104 km2) | |||||||
---|---|---|---|---|---|---|---|---|---|
Province | Dry Land | Paddy Fields | Fruit Trees | Urban Land | Forest | Grassland | Water Area | Unused Land | |
Qinghai | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 11.12 | 1.44 | 3.50 | |
Tibet | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 1.80 | 0.05 | 0.11 | |
Yunnan | 0.95 | 0.49 | 0.00 | 0.07 | 6.85 | 2.69 | 0.18 | 0.10 | |
Guizhou | 1.93 | 0.57 | 0.01 | 0.04 | 5.06 | 1.18 | 0.03 | 0.00 | |
Sichuan | 8.89 | 4.03 | 0.25 | 0.47 | 16.09 | 16.21 | 0.65 | 0.77 | |
Chongqing | 2.40 | 1.09 | 0.09 | 0.10 | 3.31 | 0.55 | 0.11 | 0.00 | |
Shaanxi | 0.35 | 0.05 | 0.00 | 0.01 | 0.43 | 0.29 | 0.00 | 0.00 | |
Gansu | 1.29 | 0.01 | 0.00 | 0.08 | 1.66 | 0.88 | 0.02 | 0.04 | |
Hubei | 0.51 | 0.08 | 0.02 | 0.00 | 1.04 | 0.14 | 0.01 | 0.00 | |
Total | 16.33 | 6.32 | 0.38 | 0.79 | 34.84 | 34.86 | 2.50 | 4.52 |
Affecting Factors | Export Coefficients of Dissolved Nitrogen | Export Coefficients of Dissolved Phosphorus | |
---|---|---|---|
Ecological factors | Grassland | 0.300 | 0.006 |
Forest | 0.200 | 0.003 | |
Unused land | 0.500 | 0.008 | |
Atmospheric deposition raised from grassland, forest and unused land (ADEF) | 33% of the total | 6% of the total | |
Anthropogenic factors | Rural life (t/ca·yr) | 1.872 | 0.214 |
Livestock breeding (t/ca·yr) | 0.060~7.320 | 0.005~0.310 | |
Land use | 0.080~1.100 | 0.032~0.068 | |
Atmospheric deposition caused by rural life, livestock breeding and land use (ADAF) | 33% of the total | 6% of the total |
Serial Number | Year | Number of Monitoring Stations | Annual Average Rainfall in the URYR (mm) |
---|---|---|---|
1 | 1991 | 120 | 839.24 |
2 | 1992 | 121 | 770.72 |
3 | 1993 | 120 | 865.00 |
4 | 1994 | 121 | 761.43 |
5 | 1995 | 121 | 826.92 |
6 | 1996 | 121 | 798.63 |
7 | 1997 | 121 | 750.25 |
8 | 1998 | 122 | 934.68 |
9 | 1999 | 122 | 885.61 |
10 | 2000 | 122 | 862.56 |
Watershed | Jinsha River | Jialing River | Tuo River | Min River | Wu River | Three Gorges Reservoir Area |
---|---|---|---|---|---|---|
Average transfer ratio | 0.31 | 0.37 | 0.14 | 0.18 | 0.1 | 0.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Liu, L. Long-Term Effects of Anthropogenic Factors on Nonpoint Source Pollution in the Upper Reaches of the Yangtze River. Sustainability 2019, 11, 2246. https://doi.org/10.3390/su11082246
Ding X, Liu L. Long-Term Effects of Anthropogenic Factors on Nonpoint Source Pollution in the Upper Reaches of the Yangtze River. Sustainability. 2019; 11(8):2246. https://doi.org/10.3390/su11082246
Chicago/Turabian StyleDing, Xiaowen, and Lin Liu. 2019. "Long-Term Effects of Anthropogenic Factors on Nonpoint Source Pollution in the Upper Reaches of the Yangtze River" Sustainability 11, no. 8: 2246. https://doi.org/10.3390/su11082246
APA StyleDing, X., & Liu, L. (2019). Long-Term Effects of Anthropogenic Factors on Nonpoint Source Pollution in the Upper Reaches of the Yangtze River. Sustainability, 11(8), 2246. https://doi.org/10.3390/su11082246