Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston
Abstract
:1. Introduction
2. Literature Review
2.1. LCM
2.1.1. Urban Prediction Models
2.1.2. Urban Growth Scenarios
2.1.3. Increasing LCM Accuracy
2.1.4. The LTM
2.1.5. LCM and Flood Risk
3. Literature Gaps and Research Questions
4. Methods
4.1. Study Areas
4.2. Process
4.2.1. Model Reliability and Accuracy (Calibration)
4.2.2. Drivers and Prediction Process
4.2.3. Variable Justification
5. Results
5.1. Predicted Urban Areas
5.2. Future Flood Risk
5.3. Current/Future Urban under Flood Risk
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Parris, A.S.; Bromirski, P.; Burkett, V.; Cayan, D.R.; Culver, M.E.; Hall, J.; Obeysekera, J. Global Sea Level Rise Scenarios for the United States National Climate Assessment; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2012.
- United Nations. World Population Prospects, The 2017 Revision: Key Findings and Advance Tables; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Factsheet: People and Oceans. Available online: https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf (accessed on 10 November 2018).
- Berke, P.; Godshalk, D.R.; Kaiser, E.J.; Rodriguez, D.A. Urban Land Use Planning, 5th ed.; University of Illinois Press: Champaign, IL, USA, 2006. [Google Scholar]
- Lu, Y.; Wang, X.; Xie, Y.; Li, K.; Xu, Y. Integrating future land use scenarios to evaluate the spatio-temporal dynamics of landscape ecological security. Sustainability 2016, 8, 1242. [Google Scholar] [CrossRef]
- Wu, F.; Zhan, J.; Su, H.; Yan, H.; Ma, E. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China. Adv. Meteorol. 2015, 2015, 11. [Google Scholar] [CrossRef]
- Zare, M.; Mohammady, M.; Pradhan, B. Modeling the effect of land use and climate change scenarios on future soil loss rate in Kasilian watershed of northern Iran. Environ. Earth Sci. 2017, 76, 305. [Google Scholar] [CrossRef]
- Te Linde, A.H.; Bubeck, P.; Dekkers, J.; De Moel, H.; Aerts, J. Future flood risk estimates along the river Rhine. Nat. Hazards Earth Syst. Sci. 2011, 11, 459–473. [Google Scholar] [CrossRef] [Green Version]
- De Moel, H.; Aerts, J.C.J.H.; Koomen, E. Development of flood exposure in the Netherlands during the 20th and 21st century. Glob. Environ. Change 2011, 21, 620–627. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.J. Markov analysis of land use change-an application of stochastic processes to remotely sensed data. Socio-Econ. Plan. Sci. 1974, 8, 311–316. [Google Scholar] [CrossRef]
- Landis, J.D. The California urban futures model: A new generation of metropolitan simulation models. Environ. Plan. B Plan. Des. 1994, 21, 399–420. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Hilferink, M.; Rietveld, P. Land Use Scanner: An integrated GIS based model for long term projections of land use in urban and rural areas. J. Geogr. Syst. 1999, 1, 155–177. [Google Scholar] [CrossRef]
- Klosterman, R.E. The What if? Collaborative planning support system. Environ. Plan. B Plan. Des. 1999, 26, 393–408. [Google Scholar] [CrossRef]
- Verburg, P.H.; De Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 1999, 116, 45–61. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using neural networks and GIS to forecast land use changes: A Land Transformation Model. Comput. Environ. Urb. Syst. 2002, 26, 553–575. [Google Scholar] [CrossRef]
- Silva, E.A.; Clarke, K.C. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput. Environ. Urb. Syst. 2002, 26, 525–552. [Google Scholar] [CrossRef]
- Waddell, P. Urbansim: Modeling urban development for land use, transportation, and environmental planning. J. Am. Plan. Assoc. 2002, 68, 297–314. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Kok, K. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Brown, D.; Band, L.E.; Green, K.O.; Irwin, E.G.; Jain, A.; Lambin, E.F.; Verburg, P.H. Advancing Land Change Modeling: Opportunities and Research Requirements; National Research Council: Washington, DC, USA, 2013. [Google Scholar]
- Shafizadeh Moghadam, H.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- The CLUE Model. Available online: http://www.ivm.vu.nl/en/Organisation/departments/spatial-analysis-decision-support/Clue/ (accessed on 20 April 2018).
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Yirsaw, E.; Wu, W.; Shi, X.; Temesgen, H.; Bekele, B. Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability 2017, 9, 1204. [Google Scholar] [CrossRef]
- He, C.; Zhao, Y.; Huang, Q.; Zhang, Q.; Zhang, D. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics. Sci. Total Environ. 2015, 532, 48–60. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Brewer, T. Impact of rapid urban expansion on green space structure. Ecol. Indic. 2017, 81, 274–284. [Google Scholar] [CrossRef]
- Song, J.; Fu, X.; Gu, Y.; Deng, Y.; Peng, Z.R. An examination of land use impacts of flooding induced by sea level rise. Nat. Hazards Earth Syst. Sci. 2017, 17, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wu, J.; Shi, S. Study of the simulated expansion boundary of construction land in Shanghai based on a SLEUTH model. Sustainability 2017, 9, 876. [Google Scholar] [CrossRef]
- Terzi, F. Scenario-based land use estimation: The case of sakarya. A/Z ITU J. Fac. Archit. 2015, 12, 181–203. [Google Scholar]
- Hoymann, J. Spatial allocation of future residential land use in the Elbe River Basin. Environ. Plan. B Plan. Des. 2010, 37, 911–928. [Google Scholar] [CrossRef]
- Goodarzi, M.S.; Sakieh, Y.; Navardi, S. Scenario-based urban growth allocation in a rapidly developing area: A modeling approach for sustainability analysis of an urban-coastal coupled system. Environ. Dev. Sustain. 2017, 19, 1103–1126. [Google Scholar] [CrossRef]
- Xi, F.; He, H.S.; Hu, Y.; Bu, R.; Chang, Y.; Wu, X.; Shi, T. Simulating the impacts of ecological protection policies on urban land use sustainability in Shenyang-Fushun, China. Int. J. Urb. Sustain. Dev. 2010, 1, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dai, L.; Xiong, H. Simulation of urban expansion patterns by integrating auto-logistic regression, Markov chain and cellular automata models. J. Environ. Plan. Manag. 2015, 58, 1113–1136. [Google Scholar] [CrossRef]
- Camacho Olmedo, M.T.; Pontius, R.G., Jr.; Paegelow, M.; Mas, J.F. Comparison of simulation models in terms of quantity and allocation of land change. Environ. Model. Softw. 2015, 69, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.P.; Chu, H.J.; Wu, C.F.; Verburg, P.H. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. Int. J. Geogr. Inf. Sci. 2011, 25, 65–87. [Google Scholar] [CrossRef]
- Land Transformation Model. Available online: http://ltm.agriculture.purdue.edu/default_ltm.htm (accessed on 2 April 2018).
- Pijanowski, B.C.; Hyndman, D.; Shellito, B.A. The Application of The Land Transformation, Groundwater Flow and Solute Transport Models for Michigan’s Grand Traverse Bay Watershed. In Proceedings of the National American Planning Association Meeting, New Orleans, LA, USA, 14 March 2001. [Google Scholar]
- Pijanowski, B.C.; Shellito, B.; Pithadia, S.; Alexandridis, K. Forecasting and assessing the impact of urban sprawl in coastal watersheds along eastern Lake Michigan. Lakes Reservoirs Res. Manag. 2002, 7, 271–285. [Google Scholar]
- Pijanowski, B.C.; Pithadia, S.; Shellito, B.A.; Alexandridis, K. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int. J. Geogr. Inf. Sci. 2005, 19, 197–215. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Tayyebi, A.; Doucette, J.; Pekin, B.K.; Braun, D.; Plourde, J. A big data urban growth simulation at a national scale: Configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. Environ. Model. Softw. 2014, 51, 250–268. [Google Scholar] [CrossRef]
- Lee, J.; Newman, G.; Park, Y. A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model. Sustainability 2018, 10, 1513. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Newman, G. Forecasting Urban Vacancy Dynamics in a Shrinking City: A Land Transformation Model. ISPRS Int. J. Geo-Inf. 2017, 6, 124. [Google Scholar] [Green Version]
- Newman, G.; Lee, J.; Berke, P. Using the land transformation model to forecast vacant land. J. Land Use Sci. 2016, 11, 450–475. [Google Scholar] [CrossRef]
- Mas, J.F.; Puig, H.; Palacio, J.L.; Sosa-López, A. Modelling deforestation using GIS and artificial neural networks. Environ. Model. Softw. 2004, 19, 461–471. [Google Scholar]
- Müller, D.; Mburu, J. Forecasting hotspots of forest clearing in Kakamega Forest, Western Kenya. For. Ecol. Manag. 2009, 257, 968–977. [Google Scholar] [CrossRef]
- Li, R.; Guan, Q.; Merchant, J. A geospatial modeling framework for assessing biofuels-related land-use and land-cover change. Agric. Ecosyst. Environ. 2012, 161, 17–26. [Google Scholar]
- Quintal, A.L.; Gotangco, C.K.; Guzman, M.A.L. Forecasting Urban Expansion in the Seven Lakes Area in San Pablo City, Laguna, the Philippines Using the Land Transformation Model. Environ. Urban. ASIA 2018, 9, 69–85. [Google Scholar] [CrossRef]
- Kuang, W. Simulating dynamic urban expansion at regional scale in Beijing-Tianjin-Tangshan Metropolitan Area. J. Geogr. Sci. 2011, 21, 317. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Tayyebi, A.; Delavar, M.R.; Yazdanpanah, M.J. Urban Expansion Simulation Using Geospatial Information System and Artificial Neural Networks. Int. J. Environ. Res. 2009, 3, 493–502. [Google Scholar]
- Moore, N.; Alagarswamy, G.; Pijanowski, B.; Thornton, P.; Lofgren, B.; Olson, J.; Qi, J. East African food security as influenced by future climate change and land use change at local to regional scales. Clim. Change 2012, 110, 823–844. [Google Scholar] [CrossRef]
- Wiley, M.; Hyndman, D.; Pijanowski, B.; Kendall, A.; Riseng, C.; Rutherford, E.; Stevenson, R. A multi-modeling approach to evaluating climate and land use change impacts in a Great Lakes River Basin. Hydrobiologia 2010, 657, 243–262. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. Surface runoff prediction regarding LULC and climate dynamics using coupled LTM, optimized ARIMA, and GIS-based SCS-CN models in tropical region. Arabian J. Geosci. 2018, 11, 53. [Google Scholar] [CrossRef]
- Tang, Z.; Engel, B.; Pijanowski, B.; Lim, K. Forecasting land use change and its environmental impact at a watershed scale. J. Environ. Manag. 2005, 76, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Duckles, J.M.; Pijanowski, B.C. The impact of future land use scenarios on runoff volumes in the Muskegon River Watershed. Environ. Manag. 2010, 46, 351–366. [Google Scholar] [CrossRef]
- Yan, H.; Edwards, F.G. Effects of land use change on hydrologic response at a watershed scale, Arkansas. J. Hydrol. Eng. 2012, 18, 1779–1785. [Google Scholar] [CrossRef]
- Li, R.; Merchant, J.W. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA. Sci. Total Environ. 2013, 447, 32–45. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Saharkhiz, M.A.; Pradhan, B.; Ahmad, N. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto Int. 2016, 31, 1158–1177. [Google Scholar] [CrossRef]
- Lin, Y.P.; Hong, N.M.; Wu, P.J.; Wu, C.F.; Verburg, P.H. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landsc. Urb. Plan. 2007, 80, 111–126. [Google Scholar] [CrossRef]
- Hansen, H.S. Urban land-use projections supporting adaptation strategies to climate changes in the coastal zone. In Geocomputation, Sustainability and Environmental Planning; Kacprzyk, J., Ed.; Springer: Heidelberg, Berlin, 2011; pp. 17–34. [Google Scholar]
- Zhao, L.; Song, J.; Peng, Z.R. Modeling Land-Use Change and Population Relocation Dynamics in Response to Different Sea Level Rise Scenarios: Case Study in Bay County, Florida. J. Urb. Plan. Dev. 2017, 143, 04017012. [Google Scholar] [CrossRef]
- Hua, L.; Tang, L.; Cui, S.; Yin, K. Simulating urban growth using the SLEUTH model in a coastal peri-urban district in China. Sustainability 2014, 6, 3899–3914. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Y.; Zhang, W.; Zhu, J.; Chen, H.; Xi, F. Application of land-use change model in guiding regional planning: A case study in Hun-Taizi River watershed, Northeast China. Chin. Geogr. Sci. 2011, 21, 609–618. [Google Scholar] [CrossRef]
- Mastop, H. Performance in Dutch spatial planning: An introduction. Environ. Plan. B Plan. Des. 1997, 24, 807–813. [Google Scholar] [CrossRef]
- Amsterdam City Vision Plan 2040 (Structuurvisie Amsterdam 2040). Available online: https://nieuwemeer.info/gab/pdf/structuurvisie_amsterdam_2040_web.pdf (accessed on 22 May 2018).
- 2012 State Plan Population Projections Data. Available online: http://www.twdb.texas.gov/waterplanning/data/projections/2012/popproj.asp (accessed on 1 August 2018).
- Silva, W.; Dijkman, J.P.; Loucks, D.P. Flood management options for The Netherlands. Int. J. Riv. Basin Manag. 2004, 2, 101–112. [Google Scholar] [CrossRef]
- Waterproof Amsterdam. Available online: http://www.floodcba2.eu/site/wp-content/uploads/waterproof-Amsterdam.pdf (accessed on 25 April 2018).
- Van Stokkom, H.T.; Smits, A.J.; Leuven, R.S. Flood defense in the Netherlands: A new era, a new approach. Water Int. 2005, 30, 76–87. [Google Scholar] [CrossRef]
- Baan, P.J.; Klijn, F. Flood risk perception and implications for flood risk management in the Netherlands. Int. J. Riv. Basin Manag. 2004, 2, 113–122. [Google Scholar] [CrossRef]
- Pleijster, E.J.; Veeken, C.V.D. Dutch Dikes; Nai010 Publishers: Rotterdam, The Netherlands, 2015. [Google Scholar]
- Qian, Z. Without zoning: Urban development and land use controls in Houston. Cities 2010, 27, 31–41. [Google Scholar] [CrossRef]
- Fisher, R. Urban Policy in Houston, Texas. Urb. Stud. 1989, 26, 144–154. [Google Scholar] [CrossRef]
- Houston City, Development Regulations. Available online: http://www.houstontx.gov/planning/DevelopRegs/ (accessed on 5 May 2018).
- Harris County Flood Control District. Available online: https://www.hcfcd.org/about/history-of-the-district/ (accessed on 28 May 2018).
- Risicokaart. Available online: www.risicokaart.nl (accessed on 22 May 2018).
- Ludy, J.; Kondolf, G.M. Flood risk perception in lands “protected” by 100-year levees. Nat. Hazards 2012, 61, 829–842. [Google Scholar] [CrossRef]
- National Flood Insurance Program. Available online: https://www.floodsmart.gov/about (accessed on 26 April 2018).
- Berke, P.; Newman, G.; Lee, J.; Combs, T.; Kolosna, C.; Salvesen, D. Evaluation of networks of plans and vulnerability to hazards and climate change: A resilience scorecard. J. Am. Plan. Assoc. 2015, 81, 287–302. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y. Simulating the impact of economic and environmental strategies on future urban growth scenarios in Ningbo, China. Sustainability 2016, 8, 1045. [Google Scholar] [CrossRef]
- Jafari, M.; Majedi, H.; Monavari, S.M.; Alesheikh, A.A.; Kheirkhah Zarkesh, M. Dynamic simulation of urban expansion based on cellular automata and logistic regression model: Case study of the Hyrcanian Region of Iran. Sustainability 2016, 8, 810. [Google Scholar] [CrossRef]
- Allen, J.; Lu, K. Modeling and prediction of future urban growth in the Charleston region of South Carolina: A GIS-based integrated approach. Conserv. Ecol. 2003, 8, 2. [Google Scholar] [CrossRef]
- Nourqolipour, R.; Shariff, A.R.B.M.; Balasundram, S.K.; Ahmad, N.B.; Sood, A.M.; Buyong, T. Predicting the effects of urban development on land transition and spatial patterns of land use in Western Peninsular Malaysia. Appl. Spat. Anal. Policy 2016, 9, 1–19. [Google Scholar] [CrossRef]
- Nourqolipour, R.; Shariff, A.R.B.M.; Ahmad, N.B.; Balasundram, S.K.; Sood, A.M.; Buyong, T.; Amiri, F. Multi-objective-based modeling for land use change analysis in the South West of Selangor, Malaysia. Environ. Earth Sci. 2015, 74, 4133–4143. [Google Scholar] [CrossRef]
- Conway, T.M. Current and future patterns of land-use change in the coastal zone of New Jersey. Environ. Plan. B Plan. Des. 2005, 32, 877–893. [Google Scholar] [CrossRef]
- Bright, E.M. The “ALLOT” model: A PC-based approach to siting and planning. Comput. Environ. Urb. Syst. 1992, 16, 435–451. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.; Zhang, X.; Duan, P.; Li, S.; Xu, Q. Investigation on the expansion of urban construction land use based on the CART-CA model. ISPRS Int. J. Geo-Inf. 2017, 6, 149. [Google Scholar] [CrossRef]
- Samie, A.; Deng, X.; Jia, S.; Chen, D. Scenario-based simulation on dynamics of land-use-land-cover change in Punjab Province, Pakistan. Sustainability 2017, 9, 1285. [Google Scholar] [CrossRef]
- Ke, X.; Zheng, W.; Zhou, T.; Liu, X. A CA-based land system change model: LANDSCAPE. Int. J. Geogr. Inf. Sci. 2017, 31, 1798–1817. [Google Scholar] [CrossRef]
- Hasan, S.S.; Deng, X.; Li, Z.; Chen, D. Projections of future land use in Bangladesh under the background of baseline, ecological protection and economic development. Sustainability 2017, 9, 505. [Google Scholar] [CrossRef]
- Samardžić-Petrović, M.; Dragićević, S.; Kovačević, M.; Bajat, B. Modeling urban land use changes using support vector machines. Trans. GIS 2016, 20, 718–734. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef]
- Losiri, C.; Nagai, M.; Ninsawat, S.; Shrestha, R.P. Modeling urban expansion in Bangkok Metropolitan region using demographic–economic data through cellular automata-Markov Chain and multi-Layer perceptron-Markov chain models. Sustainability 2016, 8, 686. [Google Scholar] [CrossRef]
- Zheng, H.W.; Shen, G.Q.; Wang, H.; Hong, J. Simulating land use change in urban renewal areas: A case study in Hong Kong. Habitat Int. 2015, 46, 23–34. [Google Scholar] [CrossRef]
- Fuglsang, M.; Münier, B.; Hansen, H.S. Modelling land-use effects of future urbanization using cellular automata: An Eastern Danish case. Environ. Model. Softw. 2013, 50, 1–11. [Google Scholar]
- Yuan, F. Urban growth monitoring and projection using remote sensing and geographic information systems: A case study in the twin cities metropolitan area, Minnesota. Geocarto Int. 2010, 25, 213–230. [Google Scholar] [CrossRef]
- Gallardo, M.; Gómez, I.; Vilar, L.; Martínez-Vega, J.; Martín, M.P. Impacts of future land use/land cover on wildfire occurrence in the Madrid region (Spain). Reg. Environ. Change 2016, 16, 1047–1061. [Google Scholar] [CrossRef]
- Loonen, W.; Koomen, E. Methodology. In Calibration and Validation of the Land Use Scanner Allocation Algorithms; Netherlands Environmental Assessment Agency: Bilthoven, The Netherlands, 2009; pp. 21–26. [Google Scholar]
- Pettit, C.; Pullar, D. A way forward for land-use planning to achieve policy goals by using spatial modelling scenarios. Environ. Plan. B Plan. Des. 2004, 31, 213–233. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Batty, M. Modeling urban growth with GIS based cellular automata and least squares SVM rules: A case study in Qingpu–Songjiang area of Shanghai, China. Stoch. Environ. Res Risk Assess. 2016, 30, 1387–1400. [Google Scholar] [CrossRef]
- Munshi, T.; Zuidgeest, M.; Brussel, M.; Van Maarseveen, M. Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities 2014, 39, 68–86. [Google Scholar] [CrossRef]
- Plata-Rocha, W.; Gómez-Delgado, M.; Bosque-Sendra, J. Simulating urban growth scenarios using GIS and multicriteria analysis techniques: A case study of the Madrid region, Spain. Environ. Plan. B Plan. Des. 2011, 38, 1012–1031. [Google Scholar] [CrossRef]
- Kavian, A.; Golshan, M.; Abdollahi, Z. Flow discharge simulation based on land use change predictions. Environ. Earth Sci. 2017, 76, 588. [Google Scholar] [CrossRef]
- Schotten, K.; Goetgeluk, R.; Hilferink, M.; Rietveld, P.; Scholten, H. Residential construction, land use and the environment. Simulations for the Netherlands using a GIS-based land use model. Environ. Model. Assess. 2001, 6, 133–143. [Google Scholar]
- Ku, C.A. Incorporating spatial regression model into cellular automata for simulating land use change. Appl. Geogr. 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Zhen, L.; Deng, X.; Wei, Y.; Jiang, Q.; Lin, Y.; Helming, K.; Hu, J. Future land use and food security scenarios for the Guyuan district of remote western China. IFor.-Biogeosci. For. 2014, 7, 372. [Google Scholar] [CrossRef]
- Landis, J.D. Imagining land use futures: Applying the California urban futures model. J. Am. Plan. Assoc. 1995, 61, 438–457. [Google Scholar] [CrossRef]
- Hu, Z.; Lo, C. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urb. Syst. 2007, 31, 667–688. [Google Scholar] [CrossRef]
- Gneiting, T.; Balabdaoui, F.; Raftery, A.E. Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2007, 69, 243–268. [Google Scholar] [CrossRef] [Green Version]
- Waljee, A.K.; Higgins, P.D.; Singal, A.G. A primer on predictive models. Clin. Transl. Gastroenterol. 2013, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Pontius, R.G. Quantification error versus location error in comparison of categorical maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Pontius, R.G. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm. Eng. Remote Sens. 2002, 68, 1041–1049. [Google Scholar]
- Pijanowski, B.; Alexandridis, K.; Mueller, D. Modelling urbanization patterns in two diverse regions of the world. J. Land Use Sci. 2006, 1, 83–108. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Streiner, D.L.; Cairney, J. What’s under the ROC? An introduction to receiver operating characteristics curves. Can. J. Psychiatry 2007, 52, 121–128. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Let. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Osborne, P.; Alonso, J. Bryant, R Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards. J. Appl. Ecol. 2001, 38, 458–471. [Google Scholar] [CrossRef]
- Alsharif, A.A.; Pradhan, B. Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J. Indian Soc. Remote Sens. 2014, 42, 149–163. [Google Scholar] [CrossRef]
- Zare, M.; Panagopoulos, T.; Loures, L. Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran. Land Use Policy 2017, 67, 558–572. [Google Scholar] [CrossRef]
- Centraal Bureau voor de Statistiek. Available online: https://www.cbs.nl/ (accessed on 25 May 2018).
- Houston Galveston Area Council and the City of Houston GIS Open Data Portal. Available online: https://cohgis-mycity.opendata.arcgis.com/ (accessed on 4 July 2018).
- Census Bureau. Available online: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml (accessed on 2 July 2018).
- Daniels, T. When City and Country Collide: Managing Growth in the Metropolitan Fringe; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Mieszkowski, P.; Mills, E.S. The causes of metropolitan suburbanization. J. Econ. Perspect. 1993, 7, 135–147. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use; Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Brueckner, J.K. Urban sprawl: Diagnosis and remedies. Int. Reg. Sci. Rev. 2000, 23, 160–171. [Google Scholar] [CrossRef]
- Farley, R.; Schuman, H.; Bianchi, S.; Colasanto, D.; Hatchett, S. “Chocolate city, vanilla suburbs:” Will the trend toward racially separate communities continue? Soc. Sci. Res. 1978, 7, 319–344. [Google Scholar] [CrossRef] [Green Version]
- Massey, D.S.; Denton, N.A. American Apartheid: Segregation and the Making of the Underclass; Harvard University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Carruthers, J.I. Growth at the fringe: The influence of political fragmentation in United States metropolitan areas. Pap. Reg. Sci. 2003, 82, 475–499. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Q.; Tang, B.S.; Skitmore, M. An integrated approach to supporting land-use decisions in site redevelopment for urban renewal in Hong Kong. Habit. Int. 2013, 38, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Hendon, W.S. The park as a determinant of property values. Am. J. Econ. Sociol. 1971, 30, 289–300. [Google Scholar] [CrossRef]
- Darling, A.H. Measuring benefits generated by urban water parks. Land Econ. 1973, 49, 22–34. [Google Scholar] [CrossRef]
- Hammer, T.R.; Coughlin, R.E.; Horn IV, E.T. The effect of a large urban park on real estate value. J. Am. Inst. Plan. 1974, 40, 274–277. [Google Scholar] [CrossRef]
- Correll, M.R.; Lillydahl, J.H.; Singell, L.D. The effects of greenbelts on residential property values: Some findings on the political economy of open space. Land Econ. 1978, 54, 207–217. [Google Scholar] [CrossRef]
- McLeod, P.B. The demand for local amenity: an hedonic price analysis. Environ. Plan. A 1984, 16, 389–400. [Google Scholar] [CrossRef]
- Ewing, R.H. Characteristics, causes, and effects of sprawl: A literature review. Urb. Ecol. 2008, 21, 519–535. [Google Scholar]
- Park, R.E.; Burgess, E.W.; McKenzie, R.D. The Ecological Approach to the Study of the Human Community. In the City; University of Chicago Press: Chicago, IL, USA, 1967; pp. 63–79. [Google Scholar]
- Pendall, R. Do land-use controls cause sprawl? Environ. Plan. B Plan. Des. 1999, 26, 555–571. [Google Scholar] [CrossRef]
- Carruthers, J.I. The impacts of state growth management programmes: A comparative analysis. Urb. Stud. 2002, 39, 1959–1982. [Google Scholar] [CrossRef]
- Bengston, D.N.; Fletcher, J.O.; Nelson, K.C. Public policies for managing urban growth and protecting open space: Policy instruments and lessons learned in the United States. Landsc. Urb. Plan. 2004, 69, 271–286. [Google Scholar] [CrossRef]
- Wilmer, R. Planning framework: A Planning Framework for Managing Sprawl. In Urban Sprawl: A Comprehensive Reference Guide, 1st ed.; Soule, D.C., Ed.; Greenwood Press: Westport, CT, USA, 2006; pp. 61–78. [Google Scholar]
- Mattson, G.A. Small Towns, Sprawl, and the Politics of Policy Choices: The Florida Experience; University Press of America: Lanham, MD, USA, 2002. [Google Scholar]
- Brody, S.D.; Highfield, W.E.; Blessing, R.; Makino, T.; Shepard, C.C. Evaluating the effects of open space configurations in reducing flood damage along the Gulf of Mexico coast. Landsc. Urb. Plan. 2017, 167, 225–231. [Google Scholar] [CrossRef]
- Gori, A.; Blessing, R.; Juan, A.; Brody, S.; Bedient, P. Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling. J. Hydrol. 2019, 568, 82–95. [Google Scholar] [CrossRef]
Input Factors | Input Patterns | Explanation | Reference for Input Factors | ||
---|---|---|---|---|---|
Amsterdam | Houston | ||||
Natural Environment | Water | √ | √ | Proximity to water surface | Yirsaw et al. (2017) [26], Liu et al. (2016) [81] |
Sea | √ | Proximity to sea | Jafari et al. (2016) [82], Allen and Lu (2003) [83] | ||
Floodplain | √ | Proximity to 100-year floodplain | Nourqolipour et al. (2016) [84], Nourqolipour et al. (2015) [85], Conway (2005) [86], Bright (1992) [87] | ||
Built Environment | Highway | √ | √ | Proximity to highways | Yao et al. (2017) [88], Samie et al. (2017) [89], Ke et al. (2017) [90], Hansen et al. (2017) [91], Samardžić-Petrović et al. (2016) [92], Lu et al. (2016) [6], Han et al. (2015) [93] |
Roads | √ | Proximity to roads | Yirsaw et al. (2017) [26], Losiri et al. (2016) [94], Liu et al. (2016) [81], Jafari et al. (2016) [82] | ||
Bus Routes | √ | Proximity to bus routes | Nourqolipour et al. (2016) [84], Zheng et al. (2015) [95], Fuglsang et al. (2013) [96], Yuan (2010) [97] | ||
Railway | √ | Proximity to railways | Lu et al. (2016) [6], Gallardo (2016) [98], He et al. (2015) [27], Han et al. (2015) [93] | ||
Dike | √ | Proximity to dikes | Nourqolipour et al. (2016) [84], Nourqolipour et al. (2015) [85] | ||
Park | √ | √ | Proximity to parks | Loonen and Koomen (2009) [99], Pettit and Pullar (2004) [100] | |
Business | √ | √ | Proximity to business | Nourqolipour et al. (2016) [84], Nourqolipour et al. (2015) [85] | |
Recreation | √ | Proximity to recreational space | Nourqolipour et al. (2016) [84], Nourqolipour et al. (2015) [85], Tang et al. (2005) [55] | ||
Commercial | √ | Proximity to commercial | Feng et al. (2016) [101], Munshi et al. (2014) [102], Plata-Rocha et al. (2011) [103] | ||
Residential | √ | Proximity to residential | Zhao et al. (2017) [62], Kavian et al. (2017) [104], Pijanowski et al. (2002) [18], Schotten et al. (2001) [105] | ||
Urban | √ | Proximity to existing urban | Jafari et al. (2016) [82], Allen and Lu (2003) [83] | ||
Hospitals | √ | Proximity to hospitals | Zheng et al. (2015) [95], Plata-Rocha et al. (2011) [103] | ||
Schools | √ | Proximity to schools | Ku (2016) [106], Zheng et al. (2015) [95] | ||
Socio-Economy | Population Density | √ | √ | Population density in 2000 | Samie et al. (2017) [89], Hansen et al. (2017) [91], Losiri et al. (2016) [94], Zhen et al. (2014) [107] |
Household | √ | Household numbers | Losiri et al. (2016) [94], Landis (1995) [108] | ||
Race | √ | White population ratio | Hu and Lo (2007) [109] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Newman, G. Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston. Sustainability 2019, 11, 1048. https://doi.org/10.3390/su11041048
Kim Y, Newman G. Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston. Sustainability. 2019; 11(4):1048. https://doi.org/10.3390/su11041048
Chicago/Turabian StyleKim, Youjung, and Galen Newman. 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston" Sustainability 11, no. 4: 1048. https://doi.org/10.3390/su11041048
APA StyleKim, Y., & Newman, G. (2019). Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston. Sustainability, 11(4), 1048. https://doi.org/10.3390/su11041048