The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Source and Processing
2.3. A Modified Emergy Ecological Footprint Method
2.3.1. Emergy Ecological Footprint
2.3.2. Emergy Carrying Capacity (ECC)
2.4. Sustainability Evaluation Indicators
2.4.1. Ecological Footprint Index (EFI)
2.4.2. Ecological Footprint Intensity Per Ten Thousand Yuan GDP (EFG)
2.4.3. Development Capacity (DC)
2.5. Sustainability Predication
3. Results
3.1. Analysis of Emergy Ecological Footprint
3.1.1. Analysis of Composition of EEF
3.1.2. Analysis of Trends of ECC and EEF
3.2. Analysis of Sustainability Indicators
3.2.1. Ecological Footprint Index (EFI)
3.2.2. Ecological Footprint Intensity Per Ten Thousand Yuan GDP (EFG)
3.2.3. Development Capacity (DC)
3.3. Analysis of Prediction Result
4. Discussion
Policy Implication
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Filipponi, F. Liver transplantation: Is it a sustainable practice? Dig. Liver Dis. Suppl. 2011, 5, 6–9. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Benett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Wan, Y.; Feng, L.; Ai, J.; Wang, Y. An integrated data envelopment analysis and emergy-based ecological footprint methodology in evaluating sustainable development, a case study of Jiangsu Province, China. Ecol. Indic. 2016, 70, 23–34. [Google Scholar] [CrossRef]
- Meadows, D.H.; Rander, J.; Meadows, D.L. The Limits to Growth; Chelsea Green Publishing: London, UK, 2004. [Google Scholar]
- Keeble, B.R. The Brundtland Report: ‘Our Common Future’. Med. War 1988, 4, 17–25. [Google Scholar] [CrossRef]
- Niccolucci, V.; Tiezzi, E.; Pulselli, F.M.; Capineri, C. Biocapacity vs Ecological Footprint of world regions: A geopolitical interpretation. Ecol. Indic. 2012, 16, 23–30. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14. [Google Scholar] [CrossRef]
- Wackernagel, M.; Rees, W.E. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabrioala, BC, Canada, 1996. [Google Scholar]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Galli, A. On the rationale and policy usefulness of ecological footprint accounting: The case of Morocco. Environ. Sci. Policy 2015, 48, 210–224. [Google Scholar] [CrossRef]
- Gao, J.; Tian, M. Analysis of over-consumption of natural resources and the ecological trade deficit in China based on ecological footprints. Ecol. Indic. 2016, 61, 899–904. [Google Scholar] [CrossRef]
- Dang, X.; Liu, G.; Xue, S.; Li, P. An ecological footprint and emergy based assessment of an ecological restoration program in the Loess Hilly Region of China. Ecol. Eng. 2013, 61, 258–267. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, D.; Sun, B.; Wang, X.; Zhang, D.; Li, J. Ecological footprints and development trends in Hefei, China. Manag. Environ. Qual. 2018, 29, 2–14. [Google Scholar] [CrossRef]
- Nakajima, E.S.; Ortega, E. Carrying capacity using emergy and a new calculation of the ecological footprint. Ecol. Indic. 2016, 60, 1200–1207. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, L.; Chen, X.; Xue, B.; Fujita, T.; Dong, H. Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. J. Clean. Prod. 2014, 75, 130–142. [Google Scholar] [CrossRef]
- Liu, H. The impact of human behavior on ecological threshold: Positive or negative?—Grey relational analysis of ecological footprint, energy consumption and environmental protection. Energy Policy 2013, 56, 711–719. [Google Scholar] [CrossRef]
- Nunes, L.M.; Catarino, A.; Ribau Teixeira, M.; Cuesta, E.M. Framework for the inter-comparison of ecological footprint of universities. Ecol. Indic. 2013, 32, 276–284. [Google Scholar] [CrossRef]
- Blasi, E.; Passeri, N.; Franco, S.; Galli, A. An ecological footprint approach to environmental—Economic evaluation of farm results. Agric. Syst. 2016, 145, 76–82. [Google Scholar] [CrossRef]
- Li, X.; Tian, M.; Wang, H.; Wang, H.; Yu, J. Development of an ecological security evaluation method based on the ecological footprint and application to a typical steppe region in China. Ecol. Indic. 2014, 39, 153–159. [Google Scholar] [CrossRef]
- Hunter, C.; Shaw, J. The ecological footprint as a key indicator of sustainable tourism. Tour. Manag. 2007, 28, 46–57. [Google Scholar] [CrossRef]
- Butnariu, A.; Avasilcai, S. Research on the Possibility to Apply Ecological Footprint as Environmental Performance Indicator for the Textile Industry. Procedia Soc. Behav. Sci. 2014, 124, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Herva, M.; Álvarez, A.; Roca, E. Combined application of energy and material flow analysis and ecological footprint for the environmental evaluation of a tailoring factory. J. Hazard. Mater. 2012, 237–238, 231–239. [Google Scholar] [CrossRef]
- Wu, X.F.; Yang, Q.; Xia, X.H.; Wu, T.H.; Wu, X.D.; Shao, L.; Hayat, T.; Alsaedi, A.; Chen, G.Q. Sustainability of a typical biogas system in China: Emergy-based ecological footprint assessment. Ecol. Inform. 2015, 26, 78–84. [Google Scholar] [CrossRef]
- Erb, K.H. Actual land demand of Austria 1926–2000: A variation on Ecological Footprint assessments. Land Use Policy 2004, 21, 247–259. [Google Scholar] [CrossRef]
- Siche, R.; Pereira, L.; Agostinho, F.; Ortega, E. Convergence of ecological footprint and emergy analysis as a sustainability indicator of countries: Peru as case study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3182–3192. [Google Scholar] [CrossRef]
- Turner, K.; Lenzen, M.; Wiedmann, T.; Barrett, J. Examining the global environmental impact of regional consumption activities—Part 1: A technical note on combining input-output and ecological footprint analysis. Ecol. Econ. 2007, 62, 37–44. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Turner, K.; Barrett, J. Examining the global environmental impact of regional consumption activities—Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade. Ecol. Econ. 2007, 61, 15–26. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Yamamoto, R. Modification of ecological footprint evaluation method to include non-renewable resource consumption using thermodynamic approach. Resour. Conserv. Recycl. 2007, 51, 870–884. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, Z.; Feng, N.; Liu, Y. A Modified Model of Ecological Footprint Accounting and its Application to Cropland in Jiangsu, China. Pedosphere 2008, 18, 154–162. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q. Modified ecological footprint accounting and analysis based on embodied exergy—A case study of the Chinese society 1981–2001. Ecol. Econ. 2007, 61, 355–376. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting—EMERGY and Environmental Decision Making. Child Dev. 1996, 42, 1187–1201. [Google Scholar] [CrossRef]
- Viglia, S.; Civitillo, D.F.; Cacciapuoti, G.; Ulgiati, S. Indicators of environmental loading and sustainability of urban systems. An emergy-based environmental footprint. Ecol. Indic. 2018, 94, 82–99. [Google Scholar] [CrossRef]
- Odum, H.T. Self-organization, transformity, and information. Science 1988, 242, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Vega-Azamar, R.E.; Glaus, M.; Hausler, R.; Oropeza-García, N.A.; Romero-López, R. An emergy analysis for urban environmental sustainability assessment, the Island of Montreal, Canada. Landsc. Urban Plan. 2013, 118, 18–28. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Wang, Y.; Qi, Y.; Liao, W.; Shui, W.; Li, L.; Qi, H.; Yu, X. An environmental sustainability assessment of China’s cement industry based on emergy. Ecol. Indic. 2017, 72, 452–458. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z.; Li, W. A modified method of ecological footprint calculation and its application. Ecol. Model. 2005, 185, 65–75. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q. Ecological footprint accounting based on emergy—A case study of the Chinese society. Ecol. Model. 2006, 198, 101–114. [Google Scholar] [CrossRef]
- Peng, W.; Wang, X.; Li, X.; He, C. Sustainability evaluation based on the emergy ecological footprint method: A case study of Qingdao, China, from 2004 to 2014. Ecol. Indic. 2018, 85, 1249–1261. [Google Scholar] [CrossRef]
- Zhao, S.; Song, K.; Gui, F.; Cai, H.; Jin, W.; Wu, C. The emergy ecological footprint for small fish farm in China. Ecol. Indic. 2013, 29, 62–67. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Y.; Chen, R. Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environ. Geol. 2006, 50, 313–322. [Google Scholar] [CrossRef]
- Li, X.L.; Huang, B.N. The cause of black soil patch grassland in Qinghai province and management countermeasures. Grassl. China 1995, 4, 64–66. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, J. Quantitative evaluation of resource and environment pressure in Qinghai Province, China based on footprint family. Chin. J. Appl. Ecol. 2016, 27, 1248–1256. [Google Scholar] [CrossRef]
- Zhao, Z.; Xie, C.; Wu, T.; Fang, J. Tibet eco-economic system evaluation based on emery theory. J. Guizhou Norm. Univ. Sci. 2005, 33, 88–95. [Google Scholar] [CrossRef]
- Puntso, D.T. Environmental Protections and Sustainable Development of Tibet, China. J. Tibet Univ. 2008, 6, 12–14. [Google Scholar]
- Gao, X.; Ma, L. Application of the energy value ecological footprint model: A case study of Wuwei City, Gansu Province. J. Northwest Univ. Natl. Philos. Soc. Sci. 2014, 2, 104–110. [Google Scholar] [CrossRef]
- Lan, S.; Pei, Q.; Lu, H. Ecological and Economics System Analysis; Chemical Industry Press: Beijing, China, 2002. [Google Scholar] [CrossRef]
- Sui, C.; Lan, S. Emergy Analysis of Guangzhou Urban Ecosystem. Chongqing Environ. Sci. 2001, 23, 4–6. [Google Scholar] [CrossRef]
- Zhao, G.; Ding, F.; Shang, J. Ecological Economics; Chemical Industry Press: Beijing, China, 2008. [Google Scholar]
- Zhu, Y. Study on Agro-Ecosystem’s Sustainable Development of Hunan Based on the Emergy Theory. Ph.D. Thesis, Central South University of Forestry and Technology, Changsha, China, 2010. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecol. Model. 2004, 178, 201–213. [Google Scholar] [CrossRef]
- Liu, Z.H.; Li, L.T.; McVicar, T.R.; Van Niel, T.G.; Yang, Q.K.; Li, R. Introduction of the Professional Interpolation Software for Meteorology Data: ANUSPLIN. Meteorol. Mon. 2008, 34, 92–100. [Google Scholar] [CrossRef]
- Liu, Z.H.; McVicar, T.R.; Li, L.; Van Niel, T.G.; Yang, Q.K.; Li, R.; Mu, X.M. Interpolation for time series of meteorology variables using ANUGPLIN. J. Northwest A F Univ. 2008, 36, 227–234. [Google Scholar] [CrossRef]
- Xiong, D. Disscussio on Ecological Footprint Theory: Applied to Regional Sustainable Development Evaluation. Prog Geogr. 2003, 22, 618–626. [Google Scholar]
- Wang, R. Emergy-based analysis for the development of agro-ecosystem in Shanxi Province; Hunan Agricultural University: Changsha, China, 2009. [Google Scholar]
- Chen, B.; Chen, Z.M.; Zhou, Y.; Zhou, J.B.; Chen, G.Q. Emergy as embodied energy based assessment for local sustainability of a constructed wetland in Beijing. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 622–635. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Zhao, H. Application of Ecological Footprint in Evaluating Regional Sustainable Development Based on Energy Analysis Theory—A Case Study in Gansu Province. Arid Zone Res. 2011, 28, 524–531. [Google Scholar]
- Wu, L. Dynamic evaluation of China sustainable development based on the ecological footprint index. J. China Agric. Univ. 2005, 10, 94–99. [Google Scholar]
- Chen, C.Z.; Lin, Z.S. Multiple timescale analysis and factor analysis of energy ecological footprint growth in China 1953–2006. Energy Policy 2008, 36, 1666–1678. [Google Scholar] [CrossRef]
- Ulanowicz, R.E. Growth and Development: Ecosystems Phenomenology; Springer: New York, NY, USA, 1986. [Google Scholar] [CrossRef]
- Deng, J. Introduction to Grey Systems Theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar] [CrossRef]
- Xie, N.M.; Yuan, C.Q.; Yang, Y.J. Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model. Int. J. Electr. Power Energy Syst. 2015, 66, 1–8. [Google Scholar] [CrossRef]
- Lin, C.S.; Liou, F.M.; Huang, C.P. Grey forecasting model for CO2 emissions: A Taiwan study. Appl. Energy 2011, 88, 3816–3820. [Google Scholar] [CrossRef]
- Hamzacebi, C.; Es, H.A. Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy 2014, 70, 165–171. [Google Scholar] [CrossRef]
- Wang, Y.F. Predicting stock price using fuzzy grey prediction system. Expert Syst. Appl. 2002, 22, 33–38. [Google Scholar] [CrossRef]
- Pao, H.T.; Fu, H.C.; Tseng, C.L. Forecasting of CO2 emission, energy consumption and economic growth in China using an improved grey model. Energy 2012, 40, 400–409. [Google Scholar] [CrossRef]
- Wang, X.P.; Ding, S.X. Analysis on social-economic sustainable development in Qinghai Province based on ecological footprint model. China Popul. Resour. Environ. 2011, 21, 40–43. [Google Scholar]
- Liu, Z.J.; Chen, K.L.; Zhao, A.Q.; Su, M.X. Analysis of ecological footprint of Xining city based on emergy theory. Territory & Nat. Resour. Study 2011, 1, 5–7. [Google Scholar]
- An, B.S.; Cheng, G.D. Dynamic analysis of the ecological footprint and carrying capacity of Tibet. Acta Ecological Sinica 2014, 34, 1002–1009. [Google Scholar]
- Li, P.; Sun, Z.B.; Fang, J.P.; Feng, P. The sustainable development assessment in Tibet based on the dynamic analysis of ecological footprint. J.Soil Water Conserv. 2015, 29, 327–331. [Google Scholar]
- Pan, J.W.; Gai, Z.Y. Conflicts Between Economic and Ecological Development in China’s Pasturing Areas and Reasons for These Conflicts. In Ecological Economics and Harmonious Society; Springer: Berlin/Heidelberg, Germany, 2016; pp. 119–128. [Google Scholar] [CrossRef]
- Weng, B.; Wang, Y.; Huang, Y.; Ying, Z.; Huang, Q. Dynamic changes of ecological footprint and ecological capacity in Fujian Province. Chin. J. Appl. Ecol. 2006, 17, 2153–2157. [Google Scholar]
- Wei, Y.; Wu, C. Dynamic analysis of ecological sustainability based on ecological footprint model in Guizhou province. Ecol. Environ. Sci. 2011, 20, 102–108. [Google Scholar]
- Qin, Q. The Study of Sustainable Development of Ecological in Shanxi Province Based on the Model of Ecological. Master’s Thesis, Shanxi University, Taiyuan, China, 2013. [Google Scholar]
- Zhang, J.; Yao, F.; Zheng, L.; Yang, L. Evaluation of grassland dynamics in the Northern-Tibet Plateau of china using remote sensing and climate data. Sensors 2007, 7, 3312–3328. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lassoie, J.P.; Morreale, S.J.; Dong, S. A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China. Rangel. J. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Geng, Y.; Sarkis, J.; Ulgiati, S. Pushing the boundries of scientific research: 120 years of addressing global issues: Economics: Sustainability, wellbeing, and the circular economy in China and worldwide. Science 2016, 6278, 73–76. [Google Scholar]
- Yang, M. Policy of giving rewards and subsidies for grassland ecological conservation in Tibetan Plateau. Ecol. Econ. 2014, 10, 2–9. [Google Scholar]
Category | Items | Basic Data | Unit | Emergy Conversion Coefficient | Unit | Transformity | Unit | EEF (hm2) | Eef (hm2/cap) |
---|---|---|---|---|---|---|---|---|---|
Cropland | Grain | 631,800 | t | 1.62E+10 | J/t | 8.30E+04 | sej/J | 1.35E+06 | 0.2322 |
Wheat | 348,600 | t | 1.57E+10 | J/t | 6.80E+04 | sej/J | 5.94E+05 | 0.1017 | |
Hulless barley | 94,400 | t | 1.62E+10 | J/t | 8.30E+04 | sej/J | 2.02E+05 | 0.0347 | |
Beans | 56,800 | t | 1.85E+10 | J/t | 6.90E+05 | sej/J | 1.16E+06 | 0.1982 | |
Oil plants | 315,100 | t | 2.55E+10 | J/t | 6.90E+05 | sej/J | 8.84E+06 | 1.5156 | |
Melons | 12,500 | t | 2.46E+09 | J/t | 8.30E+04 | sej/J | 4.07E+03 | 0.0007 | |
Vegetables | 1,585,846 | t | 2.50E+09 | J/t | 2.70E+04 | sej/J | 1.71E+05 | 0.0293 | |
Tobacco | 150 | t | 1.43E+09 | J/t | 8.49E+04 | sej/J | 2.90E+01 | 0.0000 | |
Corns | 188,800 | t | 1.65E+10 | J/t | 2.70E+04 | sej/J | 1.34E+05 | 0.0230 | |
Potatoes | 359,500 | t | 4.20E+09 | J/t | 8.30E+04 | sej/J | 2.00E+05 | 0.0343 | |
Sugur beets | 980 | t | 2.68E+09 | J/t | 8.40E+04 | sej/J | 3.52E+02 | 0.0001 | |
Grassland | Meat | 334,100 | t | 4.60E+09 | J/t | 4.00E+06 | sej/J | 9.80E+06 | 1.6798 |
Milk | 312,600 | t | 2.90E+09 | J/t | 2.00E+06 | sej/J | 2.89E+06 | 0.4956 | |
Cotton | 20,718 | t | 4.60E+09 | J/t | 4.40E+06 | sej/J | 6.69E+05 | 0.1146 | |
Eggs | 21,800 | t | 5.50E+09 | J/t | 2.00E+06 | sej/J | 3.82E+05 | 0.0656 | |
Honey | 1533 | t | 2.95E+09 | J/t | 8.40E+04 | sej/J | 6.06E+02 | 0.0001 | |
Forestry | Walnuts | 358 | t | 2.65E+09 | J/t | 6.90E+05 | sej/J | 1.04E+03 | 0.0002 |
Pepper | 130 | t | 3.86E+10 | J/t | 6.90E+05 | sej/J | 5.52E+03 | 0.0009 | |
Woods | 5000 | t | 1.57E+10 | J/t | 4.40E+04 | sej/J | 5.51E+03 | 0.0009 | |
Fruits | 13,249 | t | 3.30E+09 | J/t | 5.30E+05 | sej/J | 3.70E+04 | 0.0063 | |
Water areas | Fishery | 9037 | t | 5.50E+09 | J/t | 2.00E+06 | sej/J | 1.59E+05 | 0.03 |
Fossil land | Chemical fertilizer | 1886.4 | t | - | - | 1.60E+15 | sej/t | 4.81E+03 | 0.0008 |
Plastic film | 7045.86 | t | - | - | 3.80E+14 | sej/t | 4.27E+03 | 0.0007 | |
Built-up land | Waste water | 2.30E+08 | t | 5.00E+06 | J/t | 8.60E+05 | sej/J | 1.58E+06 | 0.2704 |
Waste gas | 2.71E+08 | t | 2.40E+06 | J/t | 4.80E+04 | sej/J | 4.98E+04 | 0.0085 | |
Solid waste | 1.24E+08 | t | 6.90E+08 | J/t | 1.80E+06 | sej/J | 2.46E+08 | 42.1803 | |
Eletricity | 3.14E+10 | Kw·h | 3.60E+06 | J/kW·h | 1.60E+05 | sej/J | 2.88E+07 | 4.9384 | |
Total | 3.03E+08 | 51.96 |
Category | Items | Basic Data | Unit | Emergy Conversion Coefficient | Unit | Transformity | Unit | EEF (hm2) | Eef (hm2/cap) |
---|---|---|---|---|---|---|---|---|---|
Cropland | Grain | 4663 | t | 1.62E+10 | J/t | 8.30E+04 | sej/J | 1.00E+04 | 0.0031 |
Wheat | 237,252 | t | 1.57E+10 | J/t | 6.80E+04 | sej/J | 4.04E+05 | 0.1272 | |
Hulless barley | 680,542 | t | 1.62E+10 | J/t | 8.30E+04 | sej/J | 1.46E+06 | 0.4596 | |
Beans | 22,107 | t | 1.85E+10 | J/t | 6.90E+05 | sej/J | 4.50E+05 | 0.1417 | |
Other grains | 35,173 | t | 1.62E+10 | J/t | 8.30E+04 | sej/J | 7.54E+04 | 0.0238 | |
Oil plants | 63,433 | t | 2.55E+10 | J/t | 6.90E+05 | sej/J | 1.78E+06 | 0.5606 | |
Peanuts | 338 | t | 2.55E+10 | J/t | 6.90E+05 | sej/J | 9.49E+03 | 0.0030 | |
Vegetables | 682,132 | t | 2.50E+09 | J/t | 2.70E+04 | sej/J | 7.34E+04 | 0.0231 | |
Green feeds | 355,752 | t | 1.43E+09 | J/t | 8.49E+04 | sej/J | 6.89E+04 | 0.0217 | |
Grassland | Meat | 286,200 | t | 4.60E+09 | J/t | 4.00E+06 | sej/J | 8.40E+06 | 2.6437 |
Milk | 340,600 | t | 2.90E+09 | J/t | 2.00E+06 | sej/J | 3.15E+06 | 0.9922 | |
Forestry | Fruits | 12,553 | t | 3.30E+09 | J/t | 5.30E+05 | sej/J | 3.50E+04 | 0.0110 |
Tea | 54 | t | 1.43E+10 | J/t | 2.00E+05 | sej/J | 2.46E+02 | 0.0001 | |
Matsutake | 80 | t | 9.35E+09 | J/t | 2.70E+04 | sej/J | 3.22E+01 | 0.0000 | |
Mushroom | 506 | t | 9.35E+09 | J/t | 2.70E+04 | sej/J | 2.04E+02 | 0.0001 | |
Walnuts | 4352 | t | 2.65E+09 | J/t | 6.90E+05 | sej/J | 1.27E+04 | 0.0040 | |
Pepper | 137 | t | 3.86E+10 | J/t | 6.90E+05 | sej/J | 5.82E+03 | 0.0018 | |
Woods | 74,250 | t | 1.57E+10 | J/t | 4.40E+04 | sej/J | 8.18E+04 | 0.0258 | |
Bamboo | 11,072 | t | 1.57E+10 | J/t | 4.40E+04 | sej/J | 1.22E+04 | 0.0038 | |
Fossil land | Chemical Fertilizer | 1012 | t | - | - | 1.60E+15 | sej/t | 2.58E+03 | 0.0008 |
Plastic film | 1724 | t | - | - | 3.80E+14 | sej/t | 1.04E+03 | 0.0003 | |
Built-up land | Waste water | 4.31E+06 | t | 5.00E+06 | J/t | 8.60E+05 | sej/J | 2.96E+04 | 0.0093 |
Waste gas | 2.19E+07 | t | 2.40E+06 | J/t | 4.80E+04 | sej/J | 4.03E+03 | 0.0013 | |
Solid waste | 3.83E+06 | t | 6.90E+08 | J/t | 1.80E+06 | sej/J | 7.59E+06 | 2.3891 | |
Eletricity | 3.22E+09 | kW·h | 3.60E+06 | J/kW·h | 1.60E+05 | sej/J | 2.96E+06 | 0.9323 | |
Total | 2.66E+07 | 8.38 |
MAPE (%) | Forecasting Power |
---|---|
>50 | Weak and inaccurate forecasting |
20–50 | Reasonable forecasting |
10–20 | Good forecasting |
<10 | Highly accurate forecasting |
1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | |
Actual value (hm2/cap) | 4.98 | 5.20 | 4.20 | 3.40 | 2.75 | 2.22 | 1.80 | 1.45 | 1.18 | 0.95 |
Forecasted value (hm2/cap) | 4.91 | 4.13 | 3.83 | 2.87 | 2.67 | 1.93 | 1.19 | 1.09 | 0.24 | |
PE (%) | 0.38 | 0.18 | 0.20 | 0.14 | –0.11 | 0.07 | –0.39 | 0.16 | –0.36 | |
MAPE (%) | 0.05 | |||||||||
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
Actual value (hm2/cap) | –1.86 | –4.94 | –6.30 | –8.91 | –9.89 | –15.02 | –27.66 | –30.18 | –33.01 | –37.93 |
Forecasted value (hm2/cap) | –7.08 | –8.91 | –11.21 | –14.10 | –17.75 | –22.33 | –28.10 | –35.36 | –44.50 | |
PE (%) | –43.27 | –41.36 | –25.78 | –42.60 | –18.15 | 19.26 | 6.88 | –7.13 | –17.32 | |
MAPE (%) | 2.45 |
1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | |
Actual value (hm2/cap) | 40.09 | 41.08 | 37.86 | 39.12 | 39.16 | 39.31 | 35.41 | 36.04 | 34.63 | 32.91 |
Forecasted value (hm2/cap) | 41.96 | 40.66 | 39.40 | 38.18 | 36.99 | 35.85 | 34.74 | 33.66 | 32.62 | |
PE (%) | –2.14 | –7.40 | –0.72 | 2.50 | 5.90 | –1.24 | 3.61 | 2.80 | 0.88 | |
MAPE (%) | 0.37 | |||||||||
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
Actual value (hm2/cap) | 31.74 | 28.27 | 30.99 | 32.27 | 25.15 | 28.98 | 27.26 | 23.94 | 24.65 | 20.47 |
Forecasted value (hm2/cap) | 31.24 | 30.05 | 28.91 | 27.82 | 26.76 | 25.74 | 24.76 | 23.82 | 22.92 | |
PE (%) | –10.51 | 3.02 | 10.40 | –10.60 | 7.66 | 5.57 | –3.45 | 3.35 | –11.97 | –10.51 |
MAPE (%) | 1.53 |
Years | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|
Qinghai | –56.00 | –70.47 | –88.68 | –111.59 | –140.42 | –176.70 | –222.36 | –279.81 | –352.11 | –443.08 |
Tibet | 23.07 | 22.36 | 21.66 | 20.99 | 20.34 | 19.71 | 19.10 | 18.51 | 17.94 | 17.38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Li, W.; Song, Y.; Xu, J.; Wang, W.; Liu, C. The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet. Sustainability 2019, 11, 5587. https://doi.org/10.3390/su11205587
Wei W, Li W, Song Y, Xu J, Wang W, Liu C. The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet. Sustainability. 2019; 11(20):5587. https://doi.org/10.3390/su11205587
Chicago/Turabian StyleWei, Wei, Wenlong Li, Yu Song, Jing Xu, Wenying Wang, and Chenli Liu. 2019. "The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet" Sustainability 11, no. 20: 5587. https://doi.org/10.3390/su11205587
APA StyleWei, W., Li, W., Song, Y., Xu, J., Wang, W., & Liu, C. (2019). The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet. Sustainability, 11(20), 5587. https://doi.org/10.3390/su11205587