Determinants and Differences of Grain Production Efficiency Between Main and Non-Main Producing Area in China
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Determinants and Differences in Technical Efficiency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tian, W.; Wan, G.H. Technical Efficiency and Its Determinants in China’s Grain Production. J. Product. Anal. 2000, 13, 159–174. [Google Scholar] [CrossRef]
- Yao, S.; Liu, Z.; Zhang, Z.Y. Spatial Differences of Grain Production Efficiency in China, 1987–1992. Econ. Plan. 2001, 34, 139–157. [Google Scholar] [CrossRef]
- Chen, A.Z.; Huffman, W.E.; Rozelle, S. Technical Efficiency of Chinese Grain Production: A Stochastic Production Frontier Approach. In Proceedings of the American Agricultural Economics Association Annual Meeting, Montreal, QC, Canada, 27–30 July 2003. [Google Scholar]
- Jiang, M.; Chunjie, Q.I. Measurement and Analysis of Agricultural Production Efficiency in Taiwan of China Based on Three-stage DEA Model. Asian Agric. Res. 2018, 10, 14–19, 22. [Google Scholar]
- Thiam, A.; Bravo-Ureta, B.E.; Rivas, T.E. Technical efficiency in developing country agriculture: A meta-analysis. Agric. Econ. 2001, 25, 235–243. [Google Scholar] [CrossRef]
- Zhou, D.M. Technical Progress, Technical Efficiency, and Productivity Growth of China’s Agriculture. J. Quant. Tech. Econ. 2009, 12, 70–82. [Google Scholar]
- Hervé, G.; Latruffe, L.; Chantal, L.M. Technical efficiency, technical progress and productivity change in French agriculture: Do subsidies and farms’ size matter. In Proceedings of the 96th EAAE Seminar, Tänikon, Switzerland, 10–11 January 2006. [Google Scholar]
- Ataboh, O.E.; Umeh, J.C.; Tsue, P.T. Determinants of Technical Efficiency among Rice Farmers in Kogi State, Nigeria. J. Agric. Sustain. 2014, 6, 39–49. [Google Scholar]
- Sherzod, B.; Kim, K.R.; Lee, S. Agricultural Transition and Technical Efficiency: An Empirical Analysis of Wheat-Cultivating Farms in Samarkand Region, Uzbekistan. Sustainability 2018, 10, 3232. [Google Scholar] [CrossRef]
- Nelson, C.; Neff, D.L.; Garcia, P. Technical efficiency: a comparision of production frontier methods. J. Agric. Econ. 2010, 44, 479–489. [Google Scholar]
- Odeck, J. Measuring technical efficiency and productivity growth: a comparison of SFA and DEA on Norwegian grain production data. Appl. Econ. 2007, 39, 2617–2630. [Google Scholar] [CrossRef]
- Bravo-Ureta, B.E.; Daniel, S.; Víctor, H.; Moreira, L.; José, F.; Maripani, T.A.; Rivas, T. Technical efficiency in farming: a meta-regression analysis. J. Product. Anal. 2007, 27, 57–72. [Google Scholar] [CrossRef]
- Tan, S.H.; Heerink, N.; Fu-Tian, Q.U. Impact of Land Fragmentation on Small Rice Farmers’ Technical Efficiency in Southeast China. Sci. Agric. Sin. 2011, 57, 117–123. [Google Scholar]
- Latruffe, L.; Bravo-Ureta, B.E.; Carpentier, A.; Desjeux, Y.; Moreira, V.H. Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms. Am. J. Agric. Econ. 2017, 99, 783–799. [Google Scholar] [CrossRef]
- Pei, W.; Deng, X.Z.; Jiang, S.J. Global warming, grain production and its efficiency: Case study of main grain production region. Ecol. Indic. 2019, 105, 563–570. [Google Scholar]
- Pakapon, S.; Isriya, B.; Prapinwadee, S.; Itthipong, M. The impact of age structure on technical efficiency in Thai agriculture. Kasetsart J. Soc. Sci. 2018. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; Julien, V.D.B. Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. Int. Econ. Rev. 1977, 18, 435. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Yao, S.; Liu, Z. Determinants of Grain Production and Technical Efficiency in China. J. Agric. Econ. 2010, 49, 171–184. [Google Scholar] [CrossRef]
- Coelli, T.J. A computer program for frontier production function estimation: Frontier version 2.0. Econ. Lett. 1992, 39, 29–32. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Zhu, F.W.; Chen, F.; Yu, M.; Zhang, S.L.; Yang, Y.J. Assessing the Impacts of Land Consolidation on Agricultural Technical Efficiency of Producers: A Survey from Jiangsu Province, China. Sustainability 2018, 10, 2490. [Google Scholar] [CrossRef]
- Jiao, X.Q.; He, G.; Cui, Z.L.; Shen, J.B.; Zhang, F.S.; Xin, X. Agri-environment policy for grain production in china: towards sustainable intensification. China Agric. Econ. Rev. 2017, 10, 78–92. [Google Scholar] [CrossRef]
- Zeng, Y.T.; Li, B.; Lu, Y.R. Regional differences of grain production technical efficiency and its influencing factors in China: A method of stochastic frontier analysis on trans-logarithmic production function. J. Hunan Agric. Univ. (Soc. Sci.) 2018, 19, 13–21. [Google Scholar]
Year | Area | Grain Output (10 kt) | Sown Area (000 ha) | Machinery Input (10 kW) | Fertilizer Use (10 kt) | Labor Input (10 kn) |
---|---|---|---|---|---|---|
2001 | Non-main | 752.17 | 1969.13 | 609.86 | 50.39 | 295.00 |
Main | 2490.66 | 5569.68 | 2066.84 | 152.22 | 631.75 | |
Total | 1505.52 | 3529.36 | 1241.22 | 94.51 | 440.93 | |
2006 | Non-main | 754.78 | 1721.53 | 730.24 | 55.20 | 248.64 |
Main | 2832.63 | 5809.24 | 2843.58 | 182.80 | 543.56 | |
Total | 1655.18 | 3492.87 | 1646.02 | 110.49 | 376.44 | |
2011 | Non-main | 800.34 | 1841.11 | 963.46 | 64.51 | 216.75 |
Main | 3340.12 | 6084.93 | 3820.98 | 208.25 | 484.02 | |
Total | 1900.91 | 3680.10 | 2201.72 | 126.80 | 332.57 | |
2016 | Non-main | 867.47 | 1843.48 | 917.25 | 67.62 | 203.61 |
Main | 3598.19 | 6270.18 | 3845.68 | 218.82 | 451.77 | |
Total | 2050.78 | 3761.72 | 2186.24 | 133.14 | 311.15 | |
2017 | Non-main | 818.58 | 1709.89 | 913.73 | 65.75 | 204.28 |
Main | 4010.62 | 6825.79 | 4153.60 | 226.40 | 481.58 | |
Total | 2201.80 | 3926.78 | 2317.68 | 135.36 | 324.44 | |
The growth rate between 2001 and 2017 | ||||||
2001–2017 | 0 | 8.83 | −13.16 | 49.83 | 30.49 | −30.75 |
1 | 61.03 | 22.55 | 100.96 | 48.73 | −23.77 | |
Total | 46.25 | 11.26 | 86.73 | 43.22 | −26.42 |
Main Grain Production Area | Non-main Grain Production Area | ||||
---|---|---|---|---|---|
Province | Abbreviation | Province | Abbreviation | Province | Abbreviation |
Hebei | HEB | Beijing | BJ | Chongqin | CQ |
Inner Mongolia | IM | Tianjing | TJ | Guizhou | GZ |
Liaoning | LN | Shanxi | SX1 | Yunnan | YN |
Jilin | JL | Shanghai | SH | Shaanxi | SX2 |
Heilongjiang | HLJ | Zhejiang | ZJ | Gansu | GS |
Jiangsu | JS | Fujian | FJ | Qinghai | QH |
Anhui | AH | Guangdong | GD | Ningxia | NX |
Jiangxi | JX | Guangxi | GX | Xinjiang | XJ |
Shandong | SD | Hainan | HN | ||
Henan | HEN | ||||
Hubei | HUB | ||||
Hunan | HUN | ||||
Sichuan | SC |
Variables | Estimated Coefficients | Standard-Error | T-Values |
---|---|---|---|
Production Function | |||
Constant | −6.204 *** | 0.527 | −11.765 |
Ln(A) | 3.124 *** | 0.253 | 12.370 |
Ln(M) | 1.191 *** | 0.190 | 6.256 |
Ln(F) | −4.056 *** | 0.319 | −12.724 |
Ln(L) | 0.964 *** | 0.230 | 4.200 |
T | 0.009 *** | 0.001 | 6.304 |
Ln(A) * Ln(M) | −0.559 *** | 0.070 | −8.018 |
Ln(A) * Ln(F) | 1.145 *** | 0.087 | 13.221 |
Ln(A) * Ln(L) | −0.585 *** | 0.089 | −6.566 |
Ln(M) * Ln(F) | 0.147 *** | 0.052 | 2.823 |
Ln(M) * Ln(L) | 0.338 *** | 0.046 | 7.431 |
Ln(F) * Ln(L) | −0.373 *** | 0.050 | −7.434 |
0.5 * Ln(A) * Ln(A) | −0.028 | 0.110 | −0.257 |
0.5 * Ln(M) * Ln(M) | 0.080 | 0.057 | 1.411 |
0.5 * Ln(F) * Ln(F) | −0.860 *** | 0.086 | −9.945 |
0.5 * Ln(L) * Ln(L) | 0.543 *** | 0.084 | 6.477 |
MP | 0.201 *** | 0.021 | 9.594 |
sigma-squared | 0.011 *** | 0.001 | 10.369 |
gamma | 0.747 *** | 0.060 | 12.517 |
Inefficiency Function | |||
Constant | 0.126 * | 0.071 | 1.777 |
Per_AP | −0.093 *** | 0.020 | −4.745 |
Out_L | 0.512 *** | 0.110 | 4.657 |
AFE | 0.514 * | 0.264 | 1.946 |
Per_GDP | 0.015 ** | 0.006 | 2.543 |
IRR | −0.395 *** | 0.064 | −6.204 |
DI | 0.625 *** | 0.078 | 7.983 |
MCI | −0.031 | 0.032 | −0.941 |
Diagnosis Statistics | Null Hypothesis | LR | Degree of Freedom | χ-Value | Decision |
---|---|---|---|---|---|
Testing the applicability of SFA | H0: γ = 0 | 397.25 * | 9 | 16.919 | Reject |
Testing translog vs. C-D | H0: βaa = βmm = βff = βll = βam = βaf = βal = βmf = βml = βfl = 0 | 262.34 * | 9 | 16.919 | Reject |
Testing technical change | H0: βt = 0 | 140.80 * | 9 | 16.919 | Reject |
Total | Land | Machinery | Fertilizer | Labor |
---|---|---|---|---|
2001 | 0.627 | −0.125 | 0.194 | 0.169 |
2002 | 0.639 | −0.122 | 0.182 | 0.170 |
2003 | 0.700 | −0.138 | 0.182 | 0.138 |
2004 | 0.749 | −0.135 | 0.153 | 0.119 |
2005 | 0.752 | −0.138 | 0.161 | 0.114 |
2006 | 0.733 | −0.095 | 0.087 | 0.162 |
2007 | 0.780 | −0.111 | 0.098 | 0.129 |
2008 | 0.804 | −0.131 | 0.126 | 0.101 |
2009 | 0.779 | −0.122 | 0.123 | 0.119 |
2010 | 0.761 | −0.113 | 0.116 | 0.135 |
2011 | 0.781 | −0.123 | 0.128 | 0.118 |
2012 | 0.778 | −0.117 | 0.118 | 0.126 |
2013 | 0.795 | −0.118 | 0.111 | 0.118 |
2014 | 0.790 | −0.116 | 0.110 | 0.124 |
2015 | 0.776 | −0.114 | 0.115 | 0.133 |
2016 | 0.843 | −0.131 | 0.111 | 0.086 |
2017 | 0.800 | −0.109 | 0.088 | 0.128 |
average | 0.758 | −0.121 | 0.130 | 0.129 |
Year | Non-Main Grain-Producing Area | Main Grain-Producing Area | Nation | Gap of Technical Efficiency |
---|---|---|---|---|
2001 | 0.746 | 0.769 | 0.756 | 0.023 |
2002 | 0.753 | 0.796 | 0.771 | 0.043 |
2003 | 0.772 | 0.766 | 0.770 | −0.006 |
2004 | 0.791 | 0.828 | 0.807 | 0.037 |
2005 | 0.786 | 0.838 | 0.808 | 0.053 |
2006 | 0.799 | 0.838 | 0.816 | 0.039 |
2007 | 0.801 | 0.829 | 0.813 | 0.028 |
2008 | 0.814 | 0.872 | 0.839 | 0.058 |
2009 | 0.816 | 0.836 | 0.824 | 0.020 |
2010 | 0.809 | 0.860 | 0.831 | 0.052 |
2011 | 0.827 | 0.900 | 0.858 | 0.073 |
2012 | 0.844 | 0.911 | 0.873 | 0.067 |
2013 | 0.843 | 0.914 | 0.874 | 0.071 |
2014 | 0.847 | 0.901 | 0.870 | 0.053 |
2015 | 0.852 | 0.919 | 0.881 | 0.067 |
2016 | 0.852 | 0.902 | 0.874 | 0.051 |
2017 | 0.858 | 0.916 | 0.883 | 0.058 |
Average | 0.812 | 0.858 | 0.832 | 0.046 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Zhao, Y. Determinants and Differences of Grain Production Efficiency Between Main and Non-Main Producing Area in China. Sustainability 2019, 11, 5225. https://doi.org/10.3390/su11195225
Chen F, Zhao Y. Determinants and Differences of Grain Production Efficiency Between Main and Non-Main Producing Area in China. Sustainability. 2019; 11(19):5225. https://doi.org/10.3390/su11195225
Chicago/Turabian StyleChen, Furong, and Yifu Zhao. 2019. "Determinants and Differences of Grain Production Efficiency Between Main and Non-Main Producing Area in China" Sustainability 11, no. 19: 5225. https://doi.org/10.3390/su11195225
APA StyleChen, F., & Zhao, Y. (2019). Determinants and Differences of Grain Production Efficiency Between Main and Non-Main Producing Area in China. Sustainability, 11(19), 5225. https://doi.org/10.3390/su11195225