Analysis of Regional Difference and Spatial Influencing Factors of Human Settlement Ecological Environment in China
Abstract
:1. Introduction
2. Literature Review
3. Methods and Materials
3.1. Index System and Data Sources
3.2. Calculation Method
3.3. Regional Difference Analysis Method
3.4. Basic Spatial Model
3.5. Spatial Effect Decomposition Method
4. Variation and Difference of HSEE in China
4.1. HSEE in Provinces
4.2. HSEE in Regions
4.2.1. Trend of HSEE
4.2.2. Difference of HSEE of Regions
5. Spatial Effect of HSEE
5.1. Spatial Correlation Analysis
5.2. Selection and Estimation of Spatial Panel Model
5.3. Direct Effect and Indirect Effect Analysis
6. Conclusions and Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Study on Desertification Control in China. Study on the Control of Desertification (Land Degradation) in China; China Environmental Science Press: Beijing, China, 1998. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2016.
- Yang, W.P.; Zhao, J.K. Sources of China’s economic growth: A Case for green accounting. Adv. Manag. Appl. Econ. 2018, 8, 33–59. [Google Scholar]
- Liu, Q.P.; Lin, Z.S.; Feng, N.H. Evaluation on the spatial differences of urban settlement environment of Jiangsu province. Areal Res. Dev. 2005, 24, 30–33. [Google Scholar]
- Zhao, Y.D.; Zhang, H.; Chen, X.P. Evaluation of city inhabitable environment quality by objective index system. J. Arid Land Resour. Environ. 2009, 4, 1–5. [Google Scholar]
- Zhang, W.X.; Wang, R. Analyses on the current situation of urban human settlement environment in China. Urban Stud. 2007, 2, 115–120. [Google Scholar]
- Sun, Y.; Cheng, Q.G.; Li, Y.; Fu, J. Assessment of eco-economic system sustainable development of Liaoning province based on energy analysis. Chin. J. Appl. Ecol. 2014, 25, 188–194. [Google Scholar]
- Gao, J.X. Study on the Theory of Sustainable Development; China Environmental Science Press: Beijing, China, 2001. [Google Scholar]
- Wang, K.Y. Compound Model System of Ecological Carrying Capacity and Its Application; Science Press: Beijing, China, 2007. [Google Scholar]
- Geddes, P. Cities in Evolution: An Introduction to the Town Planning Movement and the Study of Civicism; Howard Ferug: New York, NY, USA, 1915. [Google Scholar]
- Howard, E. Garden Cities of Tomorrow; Faber and Faber: London, UK, 1946. [Google Scholar]
- Mumfond, L. The City in History: Its Origin, Its Transformation, and Its Prospects; Harcourt, Brace & World, Inc.: New York, NY, USA, 1961. [Google Scholar]
- Doxiadis, C.A. Ekistics: An Introduction to the Science of Human Settlements; Athens Publishing Center: Athens, Greece, 1968. [Google Scholar]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol. 2008, 74, 4985. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Talen, E. Neighborhood-level social diversity: Insights from Chicago. J. Am. Plan. Assoc. 2006, 72, 431–446. [Google Scholar] [CrossRef]
- Clos, J. Keynote speech in International Symposium on Sciences of Human Settlements. In Proceedings of the International Symposium on Sciences of Human Settlements, Beijing, China, 25–28 June 2011. [Google Scholar]
- Zhao, L.; Lin, Z.; Ma, H.Q. Analysis on temporal and spatial variation about living environment of the cities on Northeastregion. Areal Res. Dev. 2013, 2, 73–78. [Google Scholar]
- Sui, Y.Z.; Shi, J. Integrated assessment of ecological quality for human settlements in Shanghai. Resour. Environ. Yangtze Basin 2013, 8, 965–971. [Google Scholar]
- Yang, Y.Z.; Guo, G.M. Natural environment suitability for human settlements in Inner Mongolia based on GIS. J. Arid Land Resour. Environ. 2012, 3, 9–16. [Google Scholar]
- Li, J.C.; Wang, W.L.; Hu, G.Y.; Wei, Z. Impacts of land use and land cover change on ecosystem service values in Maqu County. China Environ. Sci. 2010, 11, 1579–1584. [Google Scholar]
- Liu, X.; Feng, Q. Evaluation of ecological services value of alpine rangeland ecosystem in the northern Tibet region. Acta Sci. Circumst. 2012, 12, 3152–3160. [Google Scholar]
- Li, D.; Ren, Z.; Liu, X.; Lin, Z. Dynamic change of ecological service value of cultivated land in Shaanxi Province. J. Arid Land Resour. Environ. 2013, 7, 40–45. [Google Scholar]
- Feng, Z.M.; Tang, Y.; Yang, Y.Z.; Dan, Z. The relief degree of land surface in China and its correlation with population distribution. J. Geogr. Sci. 2007, 10, 1073–1082. [Google Scholar]
- Yang, J.; Yang, X.M.; Li, Y.H.; Sun, C.Z.; Wang, F.X. Assessment on spatial differences of human settlement environment in communities cased on DPSIRM model: The case study of Dalian. Geogr. Res. 2012, 1, 135–143. [Google Scholar]
- Li, X.M.; Jin, P.Y. Characteristics and spatial-temporal differences of urban human settlement environment in China. Sci. Geogr. Sin. 2012, 5, 521–529. [Google Scholar]
- Xu, W.; Zhang, G.; Li, X.; Zou, S.; Li, P.; Hu, Z.; Li, J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res. 2007, 19, 4526–4534. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Effects of urbanization on summer extreme warmest night temperature changes in surrounding Bohai Area. Sympos. Urban Environ. 2013, 15, 23–45. [Google Scholar]
- Zhao, H.; Che, H.; Zhang, X.; Ma, Y.; Wang, Y.; Wang, H.; Wang, Y. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res. 2013, 4, 427–434. [Google Scholar] [CrossRef]
- Li, J.; Li, X.M.; Liu, Z.Q. Assessment and analysis on urban human settlement ecology environment based on degree of urbanization development: Case study of Dalian, Liaoning province. China Popul. Resour. Environ. 2009, 1, 156–161. [Google Scholar]
- Pearce, D.W. Blueprint: For a Green Economy; Earthscan Ltd.: London, UK, 1989. [Google Scholar]
- Fujii, S.; Cha, H.; Kagi, N.; Miyamura, H.; Kim, Y. Effects on air pollutant removal by plant absorption and adsorption. Build. Environ. 2005, 1, 105–112. [Google Scholar] [CrossRef]
- Roca, J.; Serrano, M. Income growth and atmospheric pollution in Spain: An input–output approach. Ecol. Econ. 2007, 1, 230–242. [Google Scholar] [CrossRef]
- Gawande, K.; Bohara, A.K.; Berrens, R.P.; Wang, P. Internal migration and the environmental Kuznets curve for US hazardous waste sites. Ecol. Econ. 2000, 1, 151–166. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.M. The influential factors of urban PM 2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- National Environmental Protection Bureau. Technical Criterion for Ecosystem Status Evaluation; National Environmental Protection Bureau: Beijing, China, 2015.
- Caussinus, H.; Ruiz-Gazen, A. Exploratory Projection Pursuit: Data Analysis; ISTE: Washington, DC, USA, 2016; pp. 249–266. [Google Scholar]
- Pace, R.K.; Lesage, J.; Zhu, S. Impact of cliff and ord on the housing and real estate literature. Geogr. Anal. 2009, 4, 418–424. [Google Scholar] [CrossRef]
- Zhu, Q. Empirical analysis on the relationship between export and industrial pollution & controlling in China. World Econ. Study 2007, 8, 47–51. [Google Scholar]
- Mao, M.; Deng, Y.; Sun, J. Research on China’s regional carbon emission and environment regulation spillovers. Sci. Technol. Manag. Res. 2016, 7, 235–239. [Google Scholar]
- Zhang, C.J.; Zhang, Z.Y. The spatial effect of energy endowment and technological progress on China’s carbon emission intensity. China’s Popul. Resour. Environ. 2015, 9, 37–43. [Google Scholar]
Index | Index Type | |
---|---|---|
climate | average annual rainfall (mm) | neutral |
annual sunshine hours (h) | support | |
annual average temperature (°C) | neutral | |
land | per capita area of cultivated farmland (hectares) | support |
hydrology | surface water resources (cubic meters) | support |
ground water resources (cubic meters) | support | |
vegetation | vegetation cover rate | support |
economy | GDP (10,000 yuan) | support |
proportion of tertiary industry | support | |
open degree | support | |
high-tech output value (10,000 yuan) | support | |
energy consumption (10,000 tons of standard coal) | pressure | |
population | population density (10,000 people per hectare) | neutral |
urbanization rate | support | |
atmosphere | industrial waste gas (million standard cubic meters) | pressure |
sulfur dioxide (10,000 tons) | pressure | |
carbon dioxide (million tons) | pressure | |
smoke (powder) dust (10,000 tons) | pressure | |
water | wastewater emissions (million tons) | pressure |
soil | industrial solid waste (tons) | pressure |
garbage collection capacity (10,000 tons) | pressure | |
fertilizer application (10,000 tons) | pressure | |
pesticide use (tons) | pressure |
2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.5870 | 0.5856 | 0.6538 | 0.3642 | 0.4425 | 0.5050 | 0.4856 | 0.5460 | 0.5261 | 0.5612 | 0.4920 | 0.4357 | 0.4805 |
Tianjin | 0.5001 | 0.5100 | 0.5242 | 0.3861 | 0.3876 | 0.4347 | 0.3891 | 0.4412 | 0.4518 | 0.4854 | 0.4442 | 0.4023 | 0.4381 |
Hebei | 0.3711 | 0.3662 | 0.4502 | 0.2043 | 0.3571 | 0.3620 | 0.2944 | 0.3215 | 0.4089 | 0.3731 | 0.3568 | 0.3096 | 0.3348 |
Shanxi | 0.2964 | 0.3804 | 0.4463 | 0.1870 | 0.2753 | 0.3217 | 0.2347 | 0.2744 | 0.3645 | 0.3641 | 0.3206 | 0.2871 | 0.3245 |
Neimenggu | 0.4059 | 0.5072 | 0.5638 | 0.2297 | 0.3369 | 0.3950 | 0.2750 | 0.3163 | 0.4154 | 0.4250 | 0.3722 | 0.3414 | 0.3642 |
Liaoning | 0.4289 | 0.4450 | 0.4884 | 0.3593 | 0.3870 | 0.4263 | 0.3394 | 0.3978 | 0.4539 | 0.4759 | 0.4401 | 0.4120 | 0.4692 |
Jilin | 0.4963 | 0.5430 | 0.5620 | 0.3866 | 0.3612 | 0.4244 | 0.3170 | 0.3455 | 0.4209 | 0.4727 | 0.4035 | 0.3497 | 0.3966 |
Heilongjiang | 0.4566 | 0.4790 | 0.5210 | 0.3572 | 0.3548 | 0.4120 | 0.3198 | 0.3462 | 0.4140 | 0.4375 | 0.3693 | 0.3495 | 0.3592 |
Shanghai | 0.6164 | 0.5631 | 0.5869 | 0.4275 | 0.5642 | 0.5608 | 0.5798 | 0.6317 | 0.5462 | 0.5615 | 0.5650 | 0.5450 | 0.5527 |
Jiangsu | 0.6805 | 0.5482 | 0.5327 | 0.4815 | 0.6250 | 0.5847 | 0.6161 | 0.6173 | 0.6238 | 0.6142 | 0.6545 | 0.6871 | 0.7086 |
Zhejiang | 0.4951 | 0.4935 | 0.4798 | 0.4706 | 0.4667 | 0.4775 | 0.4710 | 0.4814 | 0.4870 | 0.4816 | 0.5011 | 0.4819 | 0.4701 |
Anhui | 0.4146 | 0.4244 | 0.4432 | 0.4492 | 0.3461 | 0.3782 | 0.3128 | 0.3252 | 0.3845 | 0.4026 | 0.3822 | 0.3587 | 0.3479 |
Fujian | 0.4850 | 0.5017 | 0.4965 | 0.4936 | 0.3960 | 0.4141 | 0.3930 | 0.3958 | 0.4025 | 0.4328 | 0.4295 | 0.4032 | 0.4096 |
Jiangxi | 0.4152 | 0.5238 | 0.4910 | 0.6021 | 0.3313 | 0.4000 | 0.3190 | 0.3236 | 0.3853 | 0.4174 | 0.3781 | 0.3513 | 0.3411 |
Shandong | 0.4363 | 0.4589 | 0.4476 | 0.5969 | 0.4914 | 0.4548 | 0.4271 | 0.4649 | 0.4991 | 0.4765 | 0.5035 | 0.5419 | 0.5680 |
Henan | 0.3790 | 0.3311 | 0.3492 | 0.3479 | 0.3360 | 0.3455 | 0.2952 | 0.3083 | 0.3527 | 0.3426 | 0.3648 | 0.3546 | 0.3884 |
Hubei | 0.4199 | 0.4136 | 0.4364 | 0.3795 | 0.3733 | 0.4160 | 0.3504 | 0.3501 | 0.3757 | 0.4150 | 0.4014 | 0.4117 | 0.3943 |
Hunan | 0.3717 | 0.3915 | 0.3810 | 0.3521 | 0.3308 | 0.3687 | 0.3194 | 0.3158 | 0.3766 | 0.4000 | 0.3850 | 0.3800 | 0.3531 |
Guangdong | 0.6239 | 0.6126 | 0.5441 | 0.5618 | 0.7100 | 0.6617 | 0.7261 | 0.6967 | 0.6506 | 0.6719 | 0.6965 | 0.7295 | 0.7419 |
Guangxi | 0.3604 | 0.4523 | 0.3720 | 0.5613 | 0.2840 | 0.3403 | 0.2962 | 0.2822 | 0.3292 | 0.3860 | 0.3398 | 0.3232 | 0.2900 |
Hainan | 0.4403 | 0.5056 | 0.5159 | 0.6992 | 0.3155 | 0.3627 | 0.3135 | 0.3262 | 0.3751 | 0.4042 | 0.3594 | 0.3061 | 0.3292 |
Chongqing | 0.3386 | 0.3004 | 0.2611 | 0.4564 | 0.2657 | 0.3049 | 0.2958 | 0.2723 | 0.2733 | 0.3514 | 0.3355 | 0.3181 | 0.2577 |
Sichuan | 0.3231 | 0.2928 | 0.2557 | 0.4599 | 0.3211 | 0.3251 | 0.3428 | 0.3192 | 0.2958 | 0.3615 | 0.3893 | 0.3924 | 0.3478 |
Guizhou | 0.2103 | 0.2449 | 0.2272 | 0.5968 | 0.2050 | 0.2536 | 0.2405 | 0.2140 | 0.2283 | 0.2625 | 0.2556 | 0.2395 | 0.2048 |
Yunnan | 0.4360 | 0.5233 | 0.5012 | 0.4524 | 0.3370 | 0.3912 | 0.3055 | 0.3157 | 0.3904 | 0.4049 | 0.3765 | 0.3363 | 0.3731 |
Shaanxi | 0.3869 | 0.4024 | 0.4207 | 0.4349 | 0.3243 | 0.3692 | 0.2969 | 0.3092 | 0.3816 | 0.4155 | 0.3653 | 0.3475 | 0.3524 |
Gansu | 0.4140 | 0.4964 | 0.5234 | 0.4016 | 0.3173 | 0.3571 | 0.2681 | 0.2901 | 0.4043 | 0.4092 | 0.3349 | 0.2976 | 0.3277 |
Qinghai | 0.4267 | 0.5021 | 0.5081 | 0.3065 | 0.2948 | 0.3611 | 0.2578 | 0.2921 | 0.4189 | 0.4147 | 0.3385 | 0.2786 | 0.3158 |
Ningxia | 0.4329 | 0.5160 | 0.5726 | 0.3190 | 0.3113 | 0.3708 | 0.2647 | 0.3066 | 0.4138 | 0.4106 | 0.3397 | 0.2833 | 0.3291 |
Xinjiang | 0.4496 | 0.5384 | 0.5313 | 0.2918 | 0.3437 | 0.4145 | 0.2922 | 0.3273 | 0.4313 | 0.4434 | 0.3481 | 0.3164 | 0.3577 |
Province | Mean | Rank | Province | Mean | Rank | Province | Mean | Rank |
---|---|---|---|---|---|---|---|---|
Guangdong | 0.6636 | 1 | Xinjiang | 0.3912 | 16 | Shaanxi | 0.3698 | 21 |
Jiangsu | 0.6134 | 2 | Anhui | 0.3823 | 17 | Hunan | 0.3635 | 22 |
Shanghai | 0.5616 | 3 | Neimenggu | 0.3806 | 18 | Qinghai | 0.3627 | 23 |
Beijing | 0.5127 | 4 | Ningxia | 0.3746 | 19 | Guangxi | 0.3551 | 24 |
Shandong | 0.4898 | 5 | Gansu | 0.3724 | 20 | Hebei | 0.3469 | 25 |
Zhejiang | 0.4813 | 6 | Jiangxi | 0.4061 | 11 | Henan | 0.3458 | 26 |
Tianjin | 0.4458 | 7 | Hainan | 0.4041 | 12 | Sichuan | 0.3405 | 27 |
Fujian | 0.4349 | 8 | Heilongjiang | 0.3982 | 13 | Shanxi | 0.3136 | 28 |
Liaoning | 0.4249 | 9 | Yunnan | 0.3957 | 14 | Chongqing | 0.3101 | 29 |
Jilin | 0.4215 | 10 | Hubei | 0.3952 | 15 | Guizhou | 0.2602 | 30 |
Region | Mean | Median | Standard Deviation | Min | Max |
---|---|---|---|---|---|
China | 0.3861 | 0.3768 | 0.0505 | 0.3130 | 0.4822 |
Northeast | 0.4043 | 0.3906 | 0.0570 | 0.3228 | 0.5247 |
Northern coast | 0.4175 | 0.4180 | 0.0273 | 0.3613 | 0.4604 |
East coast | 0.5446 | 0.5467 | 0.0311 | 0.4746 | 0.5887 |
Southern coast | 0.5528 | 0.5540 | 0.0146 | 0.5238 | 0.5774 |
Yellow River | 0.3680 | 0.3659 | 0.0704 | 0.2620 | 0.5149 |
Yangtze River | 0.3842 | 0.3842 | 0.0379 | 0.3262 | 0.4378 |
Southwest | 0.3465 | 0.3404 | 0.0506 | 0.2955 | 0.4927 |
Northwest | 0.3760 | 0.3435 | 0.0798 | 0.2792 | 0.5252 |
Region Year | Northeast | East Coast | Northern Coast | Southern Coast | Yellow River | Yangtze River | Southwest | Northwest | Intraregional Difference | Interregional Difference | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
2002 | 3.4792 | 5.7077 | 3.8125 | 0.1000 | 4.8236 | 5.2389 | 6.1567 | 6.1607 | 35.4793 | 39.8119 | 75.2912 |
2003 | 3.6709 | 6.0726 | 3.7305 | 0.1000 | 5.1987 | 5.1562 | 5.3824 | 6.2997 | 35.6109 | 39.8669 | 75.4779 |
2004 | 2.8798 | 4.8725 | 3.5996 | 0.1000 | 3.8022 | 5.7807 | 9.6263 | 4.3223 | 34.9834 | 40.6713 | 75.6547 |
2005 | 3.2458 | 6.2033 | 4.8445 | 0.1000 | 4.7171 | 5.1286 | 6.0415 | 4.7029 | 34.9837 | 39.9072 | 74.8910 |
2006 | 3.4126 | 5.9609 | 4.3722 | 0.1000 | 4.8719 | 5.3263 | 6.3565 | 5.1213 | 35.5217 | 39.7818 | 75.3034 |
2007 | 3.0229 | 6.1693 | 5.1343 | 0.1000 | 4.2939 | 5.0844 | 6.6944 | 4.2294 | 34.7286 | 40.1437 | 74.8723 |
2008 | 3.2126 | 6.5317 | 5.0797 | 0.1000 | 4.4999 | 4.8990 | 6.0386 | 4.5302 | 34.8918 | 40.0523 | 74.9441 |
2009 | 3.4007 | 6.2632 | 4.3550 | 0.1000 | 5.0384 | 5.0715 | 5.8099 | 5.5577 | 35.5963 | 39.8235 | 75.4198 |
2010 | 3.4917 | 5.9872 | 4.1589 | 0.1000 | 4.9072 | 5.2000 | 6.4813 | 5.3350 | 35.6613 | 39.7744 | 75.4357 |
2011 | 3.2576 | 6.0649 | 4.6067 | 0.1000 | 4.8276 | 5.2531 | 6.6502 | 4.6236 | 35.3838 | 39.8776 | 75.2614 |
2012 | 3.1561 | 5.9873 | 4.8327 | 0.1000 | 4.7709 | 5.3899 | 6.6663 | 4.2226 | 35.1258 | 39.9812 | 75.1070 |
2013 | 3.3657 | 6.2713 | 4.7209 | 0.1000 | 4.9767 | 5.0023 | 5.8837 | 4.6347 | 34.9553 | 39.8772 | 74.8325 |
2014 | 3.3153 | 6.0184 | 4.4061 | 0.1000 | 4.7600 | 5.2266 | 6.5103 | 5.0305 | 35.3672 | 39.8176 | 75.1848 |
mean | 3.3008 | 6.0085 | 4.4349 | 0.1000 | 4.7298 | 5.2121 | 6.4845 | 4.9824 | 35.2530 | 39.9528 | 75.2058 |
Region Year | Northeast | East Coast | Northern Coast | Southern Coast | Yellow River | Yangtze River | Southwest | Northwest | Intraregional Difference | Interregional Difference |
---|---|---|---|---|---|---|---|---|---|---|
2002 | 4.6210 | 7.5809 | 5.0636 | 0.1328 | 6.4065 | 6.9582 | 8.1772 | 8.1826 | 47.1228 | 52.8772 |
2003 | 4.8635 | 8.0455 | 4.9424 | 0.1325 | 6.8877 | 6.8314 | 7.1311 | 8.3464 | 47.1806 | 52.8194 |
2004 | 3.8066 | 6.4405 | 4.7579 | 0.1322 | 5.0257 | 7.6408 | 12.7241 | 5.7131 | 46.2409 | 53.7591 |
2005 | 4.3340 | 8.2831 | 6.4688 | 0.1335 | 6.2986 | 6.8481 | 8.0671 | 6.2796 | 46.7129 | 53.2871 |
2006 | 4.5318 | 7.9158 | 5.8061 | 0.1328 | 6.4697 | 7.0731 | 8.4412 | 6.8009 | 47.1714 | 52.8286 |
2007 | 4.0374 | 8.2398 | 6.8574 | 0.1336 | 5.7349 | 6.7908 | 8.9410 | 5.6488 | 46.3838 | 53.6162 |
2008 | 4.2866 | 8.7154 | 6.7780 | 0.1334 | 6.0043 | 6.5369 | 8.0575 | 6.0448 | 46.5571 | 53.4429 |
2009 | 4.5090 | 8.3044 | 5.7744 | 0.1326 | 6.6804 | 6.7243 | 7.7034 | 7.3691 | 47.1976 | 52.8024 |
2010 | 4.6287 | 7.9368 | 5.5132 | 0.1326 | 6.5051 | 6.8933 | 8.5919 | 7.0722 | 47.2738 | 52.7262 |
2011 | 4.3283 | 8.0585 | 6.1209 | 0.1329 | 6.4145 | 6.9798 | 8.8362 | 6.1434 | 47.0145 | 52.9855 |
2012 | 4.2022 | 7.9717 | 6.4344 | 0.1331 | 6.3522 | 7.1762 | 8.8758 | 5.6221 | 46.7677 | 53.2323 |
2013 | 4.4977 | 8.3804 | 6.3087 | 0.1336 | 6.6504 | 6.6846 | 7.8625 | 6.1934 | 46.7114 | 53.2886 |
2014 | 4.4095 | 8.0048 | 5.8604 | 0.1330 | 6.3311 | 6.9516 | 8.6591 | 6.6908 | 47.0404 | 52.9596 |
mean | 4.3890 | 7.9906 | 5.8989 | 0.1330 | 6.2893 | 6.9299 | 8.6206 | 6.6236 | 46.8750 | 53.1250 |
Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
Moran’s I | 0.1920 ** | 0.1024 * | 0.2125 ** | 0.2908 *** | 0.2713 *** | 0.2039 *** | 0.3078 *** |
Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
Moran’s I | 0.3134 *** | 0.2148 ** | 0.1604 ** | 0.2601 *** | 0.2701 *** | 0.2208 ** |
Variable | Mixed Estimation | Spatial Fixation | Time Fixation | Spatial and Time Fixation |
---|---|---|---|---|
C | 0.0514 ** | - | - | - |
(−2.2680) | ||||
exp | 0.2983 *** | −0.1040 * | 0.2252 *** | −0.1156 * |
(10.3594) | (−1.6973) | (7.8568) | (−1.9078) | |
er | −0.0278 | 0.0192 | −0.0002 | 0.0605 |
(−0.5481) | (0.3630) | (−0.0048) | (1.2108) | |
ec | 0.0358 | −0.3199 | −0.1015 | −0.6356 |
(0.0775) | (−0.6751) | (−0.2464) | (−1.4322) | |
city | −0.0852 | 0.0515 | 0.0879 | 0.0667 |
(−1.3719) | (0.5330) | (1.4946) | (0.7443) | |
lpgdp | 0.0139 | −0.0565 | 0.0324 *** | −0.0038 |
(1.5826) | (−1.4334) | (3.9756) | (−0.0832) | |
edu | 0.0187 ** | 0.0209 | −0.0094 | −0.0066 |
(2.1225) | (1.4667) | (−1.0855) | (−0.3724) | |
en | 0.0008 | −0.0113 ** | −0.0025 | −0.0091 |
(0.4283) | (−2.0554) | (−1.5471) | (−1.6482) | |
R2 | 0.5786 | 0.1081 | 0.6497 | 0.7929 |
LogL | 431.1768 | 537.8759 | 481.6372 | 574.2983 |
LM spatial lag | 37.5064 | 39.8704 | 8.6459 | 5.2345 |
0.0000 | 0.0000 | 0.0030 | 0.0220 | |
LM spatial error | 40.3117 | 36.2078 | 7.3378 | 4.8821 |
0.0000 | 0.0000 | 0.0070 | 0.0340 | |
Robust LM spatial lag | 3.0000 | 4.8235 | 1.8279 | 5.8279 |
0.0830 | 0.0280 | 0.1760 | 0.0160 | |
Robust LM Spatial error | 5.8053 | 1.1610 | 0.5897 | 4.8821 |
0.0160 | 0.2810 | 0.4430 | 0.0340 | |
spatial fixation LR test | 185.3223 (0.0000) | |||
time fixation LR test | 72.8448 (0.0000) |
Variable | Coefficient | Variable | Coefficient |
---|---|---|---|
W*SQI | 0.1610 ** | ||
(2.4548) | |||
exp | −0.1185 * | W*exp | 0.3504 *** |
(−1.8740) | (3.2212) | ||
er | 0.0764 | W*er | 0.2741 ** |
(1.5678) | (2.2112 | ||
ec | −0.7559 * | W*ec | −2.6314 ** |
(−1.7422) | (2.2998) | ||
city | 0.0842 | W*city | 0.2168 |
(0.9703) | (1.0418) | ||
lpgdp | −0.0182 | W*lpgdp | 0.0222 |
(−0.3935) | (0.2159) | ||
edu | −0.0159 | W*edu | −0.0531 |
(−0.8802) | (−1.2623) | ||
en | −0.0035 | W*en | 0.0332 ** |
(−0.5657) | (2.1316) | ||
R2 | 0.8079 | Log L | 588.2614 |
Wald test spatial lag | 24.2933 | Wald test spatial error | 23.0472 |
0.0020 | 0.0033 |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
exp | −0.1043 | 0.3815 *** | 0.2771 * |
(−1.5905) | (2.8671) | (1.7882) | |
er | 0.0899 * | 0.3324 ** | 0.4224 ** |
(1.7952 | (2.3591) | (2.5925) | |
ec | −0.8854 * | −3.1950 ** | −4.0803 *** |
(−1.9948) | (−2.4687) | (−2.7526) | |
city | 0.0948 | 0.0228 | 0.3647 |
(1.1080) | (0.1913) | (1.3360) | |
lpgdp | −0.0204 | 0.0355 | 0.0024 |
(−0.4615) | (0.4014) | (0.0185) | |
edu | 0.0179 | 0.0646 | 0.0825 |
(0.9286) | (1.2869) | (1.3470) | |
en | 0.0021 * | 0.0374 * | 0.0395 ** |
(0.3264) | (2.0011) | (4.7200) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zhao, J.; Zhao, K. Analysis of Regional Difference and Spatial Influencing Factors of Human Settlement Ecological Environment in China. Sustainability 2018, 10, 1520. https://doi.org/10.3390/su10051520
Yang W, Zhao J, Zhao K. Analysis of Regional Difference and Spatial Influencing Factors of Human Settlement Ecological Environment in China. Sustainability. 2018; 10(5):1520. https://doi.org/10.3390/su10051520
Chicago/Turabian StyleYang, Wanping, Jinkai Zhao, and Kai Zhao. 2018. "Analysis of Regional Difference and Spatial Influencing Factors of Human Settlement Ecological Environment in China" Sustainability 10, no. 5: 1520. https://doi.org/10.3390/su10051520
APA StyleYang, W., Zhao, J., & Zhao, K. (2018). Analysis of Regional Difference and Spatial Influencing Factors of Human Settlement Ecological Environment in China. Sustainability, 10(5), 1520. https://doi.org/10.3390/su10051520