Next Article in Journal
Identification and Prioritisation of Risk Factors in R&D Projects Based on an R&D Process Model
Next Article in Special Issue
Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary
Previous Article in Journal
Update of the INPRO Methodology in the Area of Waste Management
Previous Article in Special Issue
Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
Open AccessArticle

Physical Forcing-Driven Productivity and Sediment Flux to the Deep Basin of Northern South China Sea: A Decadal Time Series Study

1
Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung 80143, Taiwan
2
Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
3
Geosat Aerospace and Technology Inc., Tainan 701, Taiwan
*
Author to whom correspondence should be addressed.
Sustainability 2018, 10(4), 971; https://doi.org/10.3390/su10040971
Received: 30 January 2018 / Revised: 23 March 2018 / Accepted: 26 March 2018 / Published: 27 March 2018
(This article belongs to the Special Issue Marine Carbon Cycles)
Understanding the driving forces of absorption of anthropogenic CO2 by the oceans is critical for a sustainable ocean carbon cycle. Decadal sinking particle flux data collected at 1000 m, 2000 m, and 3500 m at the South East Asia Time Series Study (SEATS) Station (18° N, 116° E), which was located in the northern South China Sea (nSCS), show that the fluxes undergo strong seasonal and interannual variability. Changes in the flux data are correlated with the satellite-derived chlorophyll-a concentration, indicating that the mass fluxes of the sinking particles are largely controlled by the export production at or near the SEATS station. The cooling of seawater and the strengthening of wind in winter increase the nutrient inventories in the euphotic zone, thus also increasing export production in the nSCS. This study reveals that the intrusion of low-nutrient seawater from the West Philippine Sea into the nSCS significantly reduces the productivity, and hence the flux, of sinking particles. View Full-Text
Keywords: productivity; carbon cycle; SEATS; West Philippine Sea; export production; South China Sea productivity; carbon cycle; SEATS; West Philippine Sea; export production; South China Sea
Show Figures

Figure 1

MDPI and ACS Style

Lui, H.-K.; Chen, K.-Y.; Chen, C.-T.A.; Wang, B.-S.; Lin, H.-L.; Ho, S.-H.; Tseng, C.-J.; Yang, Y.; Chan, J.-W. Physical Forcing-Driven Productivity and Sediment Flux to the Deep Basin of Northern South China Sea: A Decadal Time Series Study. Sustainability 2018, 10, 971.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop