Lipid Disturbances in Breast Cancer Patients during Chemotherapy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Conflicts of Interest
References
- Iacoviello, L.; Bonaccio, M.; de Gaetano, G.; Donati, M.B. Epidemiology of breast cancer, a paradigm of the “common soil” hypothesis. Semin. Cancer Biol. 2021, 72, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef] [PubMed]
- Mehrgou, A.; Akouchekian, M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med. J. Islam. Repub. Iran 2016, 30, 369. [Google Scholar]
- Fernández, L.P.; Gómez de Cedrón, M.; Ramírez de Molina, A. Alterations of lipid metabolism in cancer: Implications in prognosis and treatment. Front. Oncol. 2020, 10, 577420. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Zhang, C.J.; Zhu, N.; Du, K.; Yin, Y.F.; Tan, X.; Liao, D.F.; Qin, L. Lipid metabolism and carcinogenesis, cancer development. Am. J. Cancer Res. 2018, 8, 778–791. [Google Scholar] [PubMed]
- Jiralerspong, S.; Kim, E.S.; Dong, W.; Feng, L.; Hortobagyi, G.N.; Giordano, S.H. Obesity, diabetes and survival outcomes in a large cohort of early-stage breast cancer patients. Ann. Oncol. 2013, 24, 2506–2514. [Google Scholar] [CrossRef]
- Benn, M.; Tybjærg-Hansen, A.; Stender, S.; Frikke-Schmidt, R.; Nordestgaard, B.G. Low-density lipoprotein cholesterol and the risk of cancer: A mendelian randomization study. J. Natl. Cancer Inst. 2011, 103, 508–519. [Google Scholar] [CrossRef]
- Mayengbam, S.S.; Singh, A.; Pillai, A.D.; Bhat, M.K. Influence of cholesterol on cancer progression and therapy. Transl. Oncol. 2021, 14, 101043. [Google Scholar] [CrossRef]
- Bull, C.J.; Bonilla, C.; Holly, J.M.; Perks, C.M.; Davies, N.; Haycock, P. Blood lipids and prostate cancer: A Mendelian randomization analysis. Cancer Med. 2016, 5, 1125–1136. [Google Scholar] [CrossRef]
- Lin, X.; Lu, L.; Liu, L.; Wei, S.; He, Y.; Chang, J. Blood lipids profile and lung cancer risk in a meta-analysis of prospective cohort studies. J. Clin. Lipidol. 2017, 11, 1073–1081. [Google Scholar] [CrossRef]
- Murdock, D.J.; Sanchez, R.J.; Mohammadi, K.A.; Fazio, S.; Geba, G.P. Serum cholesterol and the risk of developing hormonally driven cancers: A narrative review. Cancer Med. 2023, 12, 6722–6767. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.J.; Zhang, C.; Zhang, H.; Wei, X.; Li, S.X.; Liu, J.T.; Ren, X.B. A case-control study on the association between serum lipid level and the risk of breast cancer. Chin. J. Prev. Med. 2016, 50, 1091–1095. [Google Scholar]
- Sharma, V.; Sharma, A. Serum cholesterol levels in carcinoma breast. Indian J. Med. Res. 1991, 94, 193–196. [Google Scholar] [PubMed]
- Borgquist, S.; Butt, T.; Almgren, P.; Shiffman, D.; Stocks, T.; Orho-Melander, M.; Manjer, J.; Melander, O. Apolipoproteins, lipids and risk of cancer. Int. J. Cancer. 2016, 138, 2648–2656. [Google Scholar] [CrossRef] [PubMed]
- Bicakli, D.H.; Varol, U.; Degirmenci, M.; Tunali, D.; Cakar, B.; Durusoy, R.; Karaca, B.; Ali Sanli, U.; Uslu, R. Adjuvant chemotherapy may contribute to an increased risk for metabolic syndrome in patients with breast cancer. J. Oncol. Pharm. Pract. 2016, 22, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; et al. ESMO Guidelines Committee. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Z.L.; Wu, Y.T.; Wu, H.; Dai, W.; Arshad, B. Status of lipid and lipoprotein in female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis. 2018, 17, 91. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.B.; Bongiovanni, C.; Da Pra, S.; Miano, C.; Sacchi, F.; Lauriola, M.; D’Uva, G. Cardiotoxicity of anticancer drugs: Molecular mechanisms and strategies for cardioprotection. Front. Cardiovasc. Med. 2022, 9, 847012. [Google Scholar] [CrossRef]
- Tian, W.; Yao, Y.; Fan, G.; Zhou, Y.; Wu, M.; Xu, D.; Deng, Y. Changes in lipid profiles during and after (neo)adjuvant chemotherapy in women with early-stage breast cancer: A retrospective study. PLoS ONE 2019, 14, e0221866. [Google Scholar] [CrossRef]
- Osman, M.; Elkady, M.A. Prospective study to evaluate the effect of paclitaxel on cardiac ejection fraction. Breast Care 2017, 12, 255–259. [Google Scholar] [CrossRef]
- Panis, C.; Binato, R.; Correa, S.; Victorino, V.J.; Dias-Alves, V.; Herrera, A.C.S.A.; Cecchini, R.; Simão, A.N.C.; Barbosa, D.S.; Pizzatti, L.; et al. Short infusion of paclitaxel imbalances plasmatic lipid metabolism and correlates with cardiac markers of acute damage in patients with breast cancer. Cancer Chemother. Pharmacol. 2017, 80, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Kelleni, M.T.; Abdelbasset, M. Drug Induced Cardiotoxicity: Mechanism, Prevention and Management. In Cardiotoxicity; InTech Open: London, UK, 2018. [Google Scholar] [CrossRef]
- Kim, J.A.; Montagnani, M.; Koh, K.K.; Quon, M.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation 2006, 113, 1888–1904. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, M.; Yuan, P.; Chen, X.; Liu, Z. Dyslipidemia is associated with a poor prognosis of breast cancer in patients receiving neoadjuvant chemotherapy. BMC Cancer 2023, 23, 208. [Google Scholar] [CrossRef]
- Mazzuferi, G.; Bacchetti, T.; Islam, M.O.; Ferretti, G. High density lipoproteins and oxidative stress in breast cancer. Lipids Health Dis. 2021, 20, 143. [Google Scholar] [CrossRef]
- Li, R.; Liu, B.; Liu, Y.; Liu, Y.; He, Y.; Wang, D.; Sun, Y.; Xu, Y.; Yu, Q. Elevated serum lipid level can serve as early signal for metastasis for non-small cell lung cancer patients: A retrospective nested case-control study. J. Cancer 2020, 11, 7023–7031. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, S.; Guillaumond, F. Lipids in cancer: A global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022, 11, 46. [Google Scholar] [CrossRef]
- Ewertz, M.; Gray, K.P.; Regan, M.M.; Ejlertsen, B.; Price, K.N.; Thurlimann, B.; Bonnefoi, H.; Forbes, J.F.; Paridaens, R.J.; Rabaglio, M.; et al. Obesity and risk of recurrence or death after adjuvant endocrine therapy with letrozole or tamoxifen in the breast international group 1-98 trial. J. Clin. Oncol. 2012, 30, 3967–3975. [Google Scholar] [CrossRef]
- Mei, L.; He, L.; Song, Y.; Lv, Y.; Zhang, L.; Hao, F.; Xu, M. Association between obesity with disease-free survival and overall survival in triple-negative breast cancer: A meta-analysis. Medicine 2018, 97, e0719. [Google Scholar] [CrossRef]
- Fu, Y.; Zou, T.; Shen, X.; Nelson, P.J.; Li, J.; Wu, C.; Yang, J.; Zheng, Y.; Bruns, C.; Zhao, Y.; et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm 2020, 2, 27–59. [Google Scholar] [CrossRef]
- Xu, L.; Dong, Q.; Long, Y.; Tang, X.; Zhang, N.; Lu, K. Dynamic changes of blood lipids in breast cancer patients after (neo)adjuvant chemotherapy: A retrospective observational study. Int. J. Gen. Med. 2020, 13, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Qi, A.; Li, Y.; Yan, S.; Sun, H.; Chen, Y. Effect of anthracycline-based postoperative chemotherapy on blood glucose and lipid profiles in patients with invasive breast cancer. Ann. Palliat. Med. 2021, 10, 5502–5508. [Google Scholar] [CrossRef]
- He, T.; Wang, C.; Tan, Q.; Wang, Z.; Li, J.; Chen, T.; Cui, K.; Wu, Y.; Sun, J.; Zheng, D.; et al. Adjuvant chemotherapy-associated lipid changes in breast cancer patients: A real-word retrospective analysis. Medicine 2020, 99, e21498. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.; Pan, Y.Y.; Li, N.; Bian, C. Association of lipid profile levels in premenopausal and postmenopausal women with breast cancer: A meta-analysis. Int. J. Clin. Exp. Med. 2016, 9, 552–563. [Google Scholar]
- Qu, F.; Chen, R.; Peng, Y.; Ye, Y.; Tang, Z.; Wang, Y.; Zong, B.; Yu, H.; Liu, S. Assessment of the predictive role of serum lipid profiles in breast cancer patients receiving neoadjuvant chemotherapy. J. Breast Cancer 2020, 23, 246–258. [Google Scholar] [CrossRef]
- Okekunle, A.P.; Yie, G.E.; Song, S.; Kim, Z.; Youn, H.J.; Cho, J.; Min, J.W.; Kim, Y.S.; Lee, J.E. Association of lipid profile with obesity among breast cancer survivors: A cross-sectional study. Lipids Health Dis. 2022, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Orgel, E.; Sea, J.L.; Mittelman, S.D. Mechanisms by which obesity impacts survival from acute lymphoblastic leukemia. J. Natl. Cancer Inst. Monogr. 2019, 2019, 152–156. [Google Scholar] [CrossRef]
- Horowitz, N.S.; Wright, A.A. Impact of obesity on chemotherapy management and outcomes in women with gynecologic malignancies. Gynecol. Oncol. 2015, 138, 201–206. [Google Scholar] [CrossRef]
- Silbermann, M.; Pitsillides, B.; Al-Alfi, N.; Omran, S.; Al-Jabri, K.; Elshamy, K.; Ghrayeb, I.; Livneh, J.; Daher, M.; Charalambous, H.; et al. Multidisciplinary care team for cancer patients and its implementation in several Middle Eastern countries. Ann. Oncol. 2013, 24, vii41–vii47. [Google Scholar] [CrossRef]
- Pongthong, W.; Aiamanan, M. Nurses’ roles in preventing cardiotoxicity from Trastuzumab drug in HER-2 breast cancer patients. Thai J. Nurs. 2020, 69, 56–65. [Google Scholar]
Stage of Tumor | Medication | Cycles of Chemotherapy | |
---|---|---|---|
Type of tumor: Invasive breast carcinoma of no special type (NST)/infiltrating duct carcinoma NOS | |||
1. | T1cN2a | AC-TXT/3 weeks | 6 |
2. | T2pN2aMx | AC-TXT/3 weeks | 8 |
3. | T2N0 | TXT-Pertuzumab-Trastuzumab/3 weeks | 6 |
4. | T1(2)N0 | TXT/3 weeks | 3 |
5. | T3mNx | AC/3 weeks | 6 |
6. | T1cN0 | AC-TXT/2 weeks | 8 |
7. | T2(2)N2a | AC-TXT/3 weeks | 8 |
8. | T1 | AC-TXT/2 weeks | 8 |
9. | T4 | FEC-TXT/3 weeks | 6 |
10. | T2(m)N3a | AC-TXT/3 weeks | 8 |
11. | T1bN1mi(cn) | CNF/3 weeks | 6 |
12. | T2N3 | Eribulin Mesilate/2 weeks | 6 |
13. | T1cN0 | AC-TXT/3 weeks | 8 |
14. | T4 | AC-TXT/3 weeks | 6 |
15. | T4N1 | TXT/3 weeks | 8 |
16. | T3N3a | AC-TXT/3 weeks | 8 |
17. | T2N1 | AC/3 weeks | 8 |
18. | T4 | Carboplatin and Gemcitabine/3 weeks | 6 |
19. | T2N3a | AC/3 weeks | 6 |
20. | T2N1a | AC-TXT/3 weeks | 8 |
21. | T2N0 | AC-TXT/3 weeks | 6 |
22. | T1cNx | AC-TXT/3 weeks | 6 |
23. | T2 | FEC/3 weeks | 6 |
24. | T2 | AC/3 weeks | 6 |
25. | T1cN1mi | AC/2 weeks | 6 |
26. | T2N1 | Eribulin Mesilate/1 weeks | 6 |
27. | T2N1a | AC-TXT/3 weeks | 8 |
28. | T2N1c | AC/3 weeks | 6 |
29. | T2NO | Epirubicin-AC/3 weeks | 6 |
30. | T(m)1cN2a | AC/2 weeks | 6 |
31. | T1bN1mi | AC-TXT/3 weeks | 6 |
32. | T1cNx | AC/3 weeks | 6 |
33. | T1N0 | Cisplatin-TXT/3 weeks | 8 |
34. | T2N1 | Cisplatin-TXT/3 weeks | 6 |
35. | T2N0 | AC - TXT/3 weeks | 8 |
36. | T2 | FEC/3 weeks | 6 |
37. | T2N0 | AC-TXT/2 weeks | 8 |
38. | T2 | AC-TXT/3 weeks | 8 |
39. | T1N2M0 | AC/3 weeks | 4 |
40. | T2 | AC/3 weeks | 6 |
41. | T2N1a | AC-TXT/2 weeks | 8 |
42. | T1cN3aMx | AC-TXT/3 weeks | 8 |
43. | T2 | Fulvestrant -/1 week | 6 |
44. | T3N1 | AC-TXT/3 weeks | 8 |
45. | T1cN2a | AC/3 weeks | 6 |
46. | T2N0 | AC-TXT/2 weeks | 8 |
47. | T1 | AC/3 weeks | 6 |
Type of tumor: Invasive lobular carcinoma, classical subtype | |||
48. | T2Na | AC-TXT/2 weeks | 8 |
49. | T(m)3N2a | AC-TXT/2 weeks | 8 |
50. | T4 | AC/3 weeks | 8 |
Age (years) (Mean ± SD) | 60.3 (±11.4) | ||
BMI kg/m2 (Mean ± SD) | 29.6 (±5.4) |
p-Value | ||||||
---|---|---|---|---|---|---|
Pre- Chemotherapy | First Follow-Up | Second Follow-Up | Pre-Chemotherapy vs. First Follow-Up | Pre-Chemotherapy vs. Second Follow-Up | First Follow-Up vs. Second Follow-Up | |
Mean (SD) 1 | Mean (SD) 1 | Mean (SD) 1 | ||||
TC (mg/dL) | 214.9 (35.6) | 218.2 (40.6) | 232.2 (51.7) | >0.999 | 0.015 | 0.085 |
TGs (mg/dL) | 139 (57.1) | 151.7 (51.8) | 123 (56.1) | 0.392 | 0.368 | 0.003 |
HDL-C (mg/dL) | 57.1 (15.5) | 52.7 (14.4) | 56.9 (13) | 0.005 | >0.999 | 0.026 |
LDL-C (mg/dL) | 130.1 (34) | 134.8 (41.1) | 146.1 (57.1) | 0.743 | 0.035 | 0.127 |
p-Value | |||||||
---|---|---|---|---|---|---|---|
Values | Pre-Chemotherapy Ν (%) | First Follow-Up Ν (%) | Second Follow-Up Ν (%) | Pre- Chemotherapy vs. First Follow-Up | Pre- Chemotherapy vs. Second Follow-Up | First Follow-Up vs. Second Follow-Up | |
TC (mg/dL) | Normal | 14 (28.0) | 12 (24.0) | 11 (22.0) | 0.564 | 0.405 | 0.796 |
Abnormal | 36 (72.0) | 38 (76.0) | 39 (78.0) | ||||
TGs (mg/dL) | Normal | 35 (70.0) | 29 (58.0) | 34 (68.0) | 0.109 | 0.796 | 0.197 |
Abnormal | 15 (30.0) | 21 (42.0) | 16 (32.0) | ||||
HDL-C (mg/dL) | Normal | 36 (72.0) | 35 (70.0) | 41 (82.0) | 0.705 | 0.096 | 0.058 |
Abnormal | 14 (28.0) | 15 (30.0) | 9 (18.0) | ||||
LDL-C (mg/dL) | Normal | 13 (26.0) | 16 (32.0) | 11 (22.0) | 0.405 | 0.564 | 0.225 |
Abnormal | 37 (74.0) | 34 (68.0) | 39 (78.0) | 0.405 | 0.564 | 0.225 |
BMI | ||
---|---|---|
Pre-chemotherapy TC | r | 0.224 |
p | 0.118 | |
Pre-chemotherapy TGs | r | −0.051 |
p | 0.727 | |
Pre-chemotherapy HDL-C | r | −0.097 |
p | 0.501 | |
Pre-chemotherapy LDL-C | r | 0.294 * |
p | 0.038 | |
First follow-up TC | r | 0.330 * |
p | 0.019 | |
First follow-up TGs | r | 0.122 |
p | 0.397 | |
First follow-up HDL-C | r | −0.219 |
p | 0.127 | |
First follow-up LDL-C | r | 0.376 ** |
p | 0.007 | |
Second follow-up TC | r | 0.543 ** |
p | <0.001 | |
Second follow-up TGs | r | 0.112 |
p | 0.438 | |
Second follow-up HDL-C | r | −0.2 |
p | 0.165 | |
Second follow-up LDL-C | r | 0.499 ** |
p | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimperti, A.; Alikari, V.; Tsironi, M.; Rojas Gil, A.P.; Papageorgiou, D.; Kolovos, P.; Panagiotou, A.; Panoutsopoulos, G.I.; Lavdaniti, M.; Zyga, S. Lipid Disturbances in Breast Cancer Patients during Chemotherapy. Nurs. Rep. 2023, 13, 1500-1510. https://doi.org/10.3390/nursrep13040126
Alimperti A, Alikari V, Tsironi M, Rojas Gil AP, Papageorgiou D, Kolovos P, Panagiotou A, Panoutsopoulos GI, Lavdaniti M, Zyga S. Lipid Disturbances in Breast Cancer Patients during Chemotherapy. Nursing Reports. 2023; 13(4):1500-1510. https://doi.org/10.3390/nursrep13040126
Chicago/Turabian StyleAlimperti, Aikaterini, Victoria Alikari, Maria Tsironi, Andrea Paola Rojas Gil, Dimitrios Papageorgiou, Petros Kolovos, Aspasia Panagiotou, George I. Panoutsopoulos, Maria Lavdaniti, and Sofia Zyga. 2023. "Lipid Disturbances in Breast Cancer Patients during Chemotherapy" Nursing Reports 13, no. 4: 1500-1510. https://doi.org/10.3390/nursrep13040126
APA StyleAlimperti, A., Alikari, V., Tsironi, M., Rojas Gil, A. P., Papageorgiou, D., Kolovos, P., Panagiotou, A., Panoutsopoulos, G. I., Lavdaniti, M., & Zyga, S. (2023). Lipid Disturbances in Breast Cancer Patients during Chemotherapy. Nursing Reports, 13(4), 1500-1510. https://doi.org/10.3390/nursrep13040126