Minocycline Nanocrystals: A New Approach for Treating Acne with Reduced Systemic Side Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Minocycline Nanocrystals Preparation
2.3. Minocycline Nanocrystals Characterization
2.4. Loading Efficiency
2.5. Antibacterial Activity
2.5.1. Antibiotic Solubility
2.5.2. Agar Well Diffusion Method
2.5.3. Minimum Inhibitory Concentration (MIC)
2.6. Ex Vivo Skin Deposition and Permeation Study
2.7. Statistical Analysis
3. Results and Discussion
3.1. Minocycline Nanocrystals Characterization
3.2. Loading Efficiency
3.3. Agar Well Diffusion Method
3.4. MIC
3.5. Ex Vivo Skin Deposition and Permeation Study
3.6. Current Findings and Future Prospects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MIC | Minimum inhibitory concentration |
PDI | Particle distribution index |
BHI | Brain heart infusion broth |
References
- Chen, H.; Zhang, T.; Yin, X.; Man, J.; Yang, X.; Lu, M. Magnitude and temporal trend of acne vulgaris burden in 204 countries and territories from 1990 to 2019: An analysis from the Global Burden of Disease Study 2019. Br. J. Dermatol. 2022, 186, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cai, Y.; Li, L.; Hu, J.; Jia, C.; Kuang, X.; Zhou, Y.; Lan, Z.; Liu, C.; Jiang, F. Analysis of global trends and hotspots of skin microbiome in acne: A bibliometric perspective. BioData Min. 2025, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Sutaria, A.H.; Masood, S.; Saleh, H.M.; Schlessinger, J. Acne vulgaris. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Haider, A.; Shaw, J.C. Treatment of acne vulgaris. JAMA 2004, 292, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.M.; Marto, J.M.; Johnson, J.L.; Graber, E.M. A review of systemic minocycline side effects and topical minocycline as a safer alternative for treating acne and rosacea. Antibiotics 2021, 10, 757. [Google Scholar] [CrossRef] [PubMed]
- Panizzutti, B.; Skvarc, D.; Lin, S.; Croce, S.; Meehan, A.; Bortolasci, C.C.; Marx, W.; Walker, A.J.; Hasebe, K.; Kavanagh, B.E. Minocycline as treatment for psychiatric and neurological conditions: A systematic review and meta-analysis. Int. J. Mol. Sci. 2023, 24, 5250. [Google Scholar] [CrossRef]
- Dominic, M.R. Adverse reactions induced by minocycline: A review of literature. Curr. Drug Saf. 2021, 16, 309–321. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef]
- Alkrad, J.A.; Assaf, S.M.; Hussein-Al-Ali, S.H.; Alrousan, R. Microemulsions as nanocarriers for oral and transdermal administration of enoxaparin. J. Drug Deliv. Sci. Technol. 2022, 70, 103248. [Google Scholar] [CrossRef]
- Abu Ershaid, J.M.; Zhang, H.; Tayyem, M.; Sabri, A.H.; Donnelly, R.F.; Vora, L.K. Sodium Alginate Microneedles Loaded with Vancomycin for Skin Infections. J. Funct. Biomater. 2024, 15, 316. [Google Scholar] [CrossRef]
- Li, R.; Yin, X.; Jin, Y.; Chen, X.; Zhao, B.; Wang, W.; Zhong, S.; Han, D. The solubility profile and dissolution thermodynamic properties of minocycline hydrochloride in some pure and mixed solvents at several temperatures. J. Chem. Thermodyn. 2021, 157, 106399. [Google Scholar] [CrossRef]
- Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals 2021, 14, 707. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, F.; Saha, P.; Kim, B.S. Transdermal delivery of catechin using dissolving poly (vinyl alcohol)-based microneedles: Effect of microneedle composition on drug release. ACS Appl. Polym. Mater. 2023, 5, 8919–8928. [Google Scholar] [CrossRef]
- Li, H.; Wei, X.; Yi, X.; Tang, S.; He, J.; Huang, Y.; Cheng, F. Antibacterial, hemostasis, adhesive, self-healing polysaccharides-based composite hydrogel wound dressing for the prevention and treatment of postoperative adhesion. Mater. Sci. Eng. C 2021, 123, 111978. [Google Scholar] [CrossRef] [PubMed]
- Ghasemiyeh, P.; Mohammadi-Samani, S.; Noorizadeh, K.; Zadmehr, O.; Rasekh, S.; Mohammadi-Samani, S.; Dehghan, D. Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J. Drug Deliv. Sci. Technol. 2022, 74, 103595. [Google Scholar] [CrossRef]
- Hussein-Al-Ali, S.H.; El, Z.M.E.; Zobir, H.M.; Maznah, I.; Webster, T.J. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. Int. J. Nanomed. 2014, 9, 549–557. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Xiong, S.; Luo, J.; Li, Y.; Zhao, Y.; Wang, Q.; Zhang, Z.; Chen, X.; Chen, T. Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int. J. Pharm. 2020, 577, 119053. [Google Scholar] [CrossRef]
- Hussein-Al-Ali, S.; El, Z.M.; Hussein, M.Z.; Geilich, B.; Webster, T. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int. J. Nanomed. 2014, 9, 3801–3814. [Google Scholar] [CrossRef]
- Ershaid, J.M.A.; Abudoleh, S.M.; Lafi, D.N. Freeze-dried erythromycin nanocrystals: Preparation, characterisation, antimicrobial activity, and aerodynamic properties. Pharmacia 2024, 71, 1–10. [Google Scholar] [CrossRef]
- Caicedo Chacon, W.D.; Verruck, S.; Monteiro, A.R.; Valencia, G.A. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res. Int. 2023, 168, 112728. [Google Scholar] [CrossRef]
- Shackleford, D.M.; Faassen, W.F.; Houwing, N.; Lass, H.; Edwards, G.A.; Porter, C.J.; Charman, W.N. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J. Pharmacol. Exp. Ther. 2003, 306, 925–933. [Google Scholar] [CrossRef]
- Xiang, H.; Xu, S.; Zhang, W.; Li, Y.; Zhou, Y.; Miao, X. Skin permeation of curcumin nanocrystals: Effect of particle size, delivery vehicles, and permeation enhancer. Colloids Surf. B Biointerfaces 2023, 224, 113203. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Durairaju, P.; Venkatesh, G.; Pradhiksha, A.; Vennila, P.; Mary, Y.S.; Hussein-Al-Ali, S.H.; Abudoleh, S.M. Synthesis, antiproliferative, antibacterial activity of acridone derivatives: Experimental and theoretical calculations. J. Mol. Struct. 2024, 1316, 138841. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, D.; Chen, M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanoparticle Res. 2008, 10, 845–862. [Google Scholar] [CrossRef]
- Lead, J.R.; Wilkinson, K.J. Aquatic colloids and nanoparticles: Current knowledge and future trends. Environ. Chem. 2006, 3, 159–171. [Google Scholar] [CrossRef]
- Junghanns, J.-U.A.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008, 3, 295–310. [Google Scholar]
- Giradkar, V.; Mhaske, A.; Shukla, R. Nanocrystals: A Multifaceted Regimen for Dermatological Ailments. Part. Part. Syst. Charact. 2024, 41, 2300147. [Google Scholar] [CrossRef]
- Shah, S.M.H.; Ullah, F.; Khan, S.; Shah, S.M.M.; Isreb, M. Fabrication and evaluation of smart nanocrystals of artemisinin for antimalarial and antibacterial efficacy. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 251–262. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Zhang, H.; Gao, J.; Zheng, A. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2021, 28, 19–36. [Google Scholar] [CrossRef]
- Abu Ershaid, J.M.; Vora, L.K.; Volpe-Zanutto, F.; Sabri, A.H.; Peng, K.; Anjani, Q.K.; McKenna, P.E.; Ripolin, A.; Larrañeta, E.; McCarthy, H.O.; et al. Microneedle array patches for sustained delivery of fluphenazine: A micron scale approach for the management of schizophrenia. Biomater. Adv. 2023, 153, 213526. [Google Scholar] [CrossRef]
- Singh, S.K.; Srinivasan, K.; Gowthamarajan, K.; Singare, D.S.; Prakash, D.; Gaikwad, N.B. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Eur. J. Pharm. Biopharm. 2011, 78, 441–446. [Google Scholar] [CrossRef]
- Shaarani, S.; Hamid, S.S.; Kaus, N.H.M. The Influence of pluronic F68 and F127 nanocarrier on physicochemical properties, in vitro release, and antiproliferative activity of thymoquinone drug. Pharmacogn. Res. 2017, 9, 12. [Google Scholar]
- Cacua, K.; Ordoñez, F.; Zapata, C.; Herrera, B.; Pabón, E.; Buitrago-Sierra, R. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123960. [Google Scholar] [CrossRef]
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef]
- Dixit, T.; Vaidya, A.; Ravindran, S. Polymeric nanoparticles-based targeted delivery of drugs and bioactive compounds for arthritis management. Future Sci. OA 2025, 11, 2467591. [Google Scholar] [CrossRef]
- Hazot, Y.; Malinov, T.; Gazal, E.; Keynan, R.; Margulis, L.; Tamarkin, D. Topical oleaginous minocycline foam: Efficacious delivery into skin layers. J. Anal. Pharm. Res. 2017, 4, 00117. [Google Scholar]
Sample | S. aureus (ATCC 9144) | S. epidermidis (ATCC 51625) | C. acnes (ATCC 11827) |
---|---|---|---|
Minocycline 33.33 mg/mL | 4.333 ± 0.125 | 4.1 ± 0.082 | 4.4 ± 0.082 |
Minocycline nanocrystal 33.33 mg/mL | 4.167 ± 0.125 | 3.967 ± 0.047 | 4.433 ± 0.047 |
Sample | S. aureus (ATCC 9144) | S. epidermidis (ATCC 51625) | C. acnes (ATCC 11827) |
---|---|---|---|
Minocycline | <0.51 µg/ml | <0.51 µg/ml | <0.51 µg/ml |
Minocycline nanocrystal | <0.51 µg/ml | <0.51 µg/ml | <0.51 µg/ml |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abudoleh, S.M.; Abu Ershaid, J.M.; Lafi, D.; Dahshan, N.A.; Talhouni, A.; Abuirmeileh, A. Minocycline Nanocrystals: A New Approach for Treating Acne with Reduced Systemic Side Effects. Pharmaceutics 2025, 17, 727. https://doi.org/10.3390/pharmaceutics17060727
Abudoleh SM, Abu Ershaid JM, Lafi D, Dahshan NA, Talhouni A, Abuirmeileh A. Minocycline Nanocrystals: A New Approach for Treating Acne with Reduced Systemic Side Effects. Pharmaceutics. 2025; 17(6):727. https://doi.org/10.3390/pharmaceutics17060727
Chicago/Turabian StyleAbudoleh, Suha M., Juhaina M. Abu Ershaid, Dima Lafi, Nisreen A. Dahshan, Ahmad Talhouni, and Amjad Abuirmeileh. 2025. "Minocycline Nanocrystals: A New Approach for Treating Acne with Reduced Systemic Side Effects" Pharmaceutics 17, no. 6: 727. https://doi.org/10.3390/pharmaceutics17060727
APA StyleAbudoleh, S. M., Abu Ershaid, J. M., Lafi, D., Dahshan, N. A., Talhouni, A., & Abuirmeileh, A. (2025). Minocycline Nanocrystals: A New Approach for Treating Acne with Reduced Systemic Side Effects. Pharmaceutics, 17(6), 727. https://doi.org/10.3390/pharmaceutics17060727