A Perspective on the Use of Hydroxyapatites to Improve the Dissolution Behavior of Poorly Water-Soluble Piretanide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Syntheses
2.2.1. Synthesis of Hydroxyapatites
2.2.2. Synthesis of HAPs@Piretanide Hybrids
2.3. Techniques
2.3.1. Physical–Chemical Measurements
2.3.2. Pharmaceutical Characterization
3. Results
3.1. Physical–Chemical Characterization
3.2. Pharmaceutical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oshiro, J.A., Jr.; Paiva Abuçafy, M.; Berbel Manaia, E.; Lallo da Silva, B.; Galdorfini Chiari-Andréo, B.; Aparecida Chiavacci, L. Drug Delivery Systems Obtained from Silica Based Organic-Inorganic Hybrids. Polymers 2016, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Campodoni, E.; Montanari, M.; Artusi, C.; Bassi, G.; Furlani, F.; Montesi, M.; Panseri, S.; Sandri, M.; Tampieri, A. Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials. J. Compos. Sci. 2021, 5, 278. [Google Scholar] [CrossRef]
- Singh, G.; Singh, R.P.; Singh Jolly, S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review. J. Sol.-Gel. Sci. Technol. 2020, 94, 505–530. [Google Scholar] [CrossRef]
- Okpe, P.C.; Folorunso, O.; Sunday Aigbodion, V.; Obayi, C. Hydroxyapatite synthesis and characterization from waste animal bones and natural sources for biomedical applications. J. Biomed. Mater. Res. 2024, 112, e35440. [Google Scholar] [CrossRef]
- Chen, S.; Guo, R.; Xie, C.; Liang, Q.; Xiao, X. Biomimetic mineralization of nanocrystalline hydroxyapatites on aminated modified polylactic acid microspheres to develop a novel drug delivery system for alendronate. Mater. Sci. Eng. C 2020, 110, 110655. [Google Scholar] [CrossRef]
- Bystrov, V.; Paramonova, E.; Avakyan, L.; Coutinho, J.; Bulina, N. Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects. Nanomaterials 2021, 11, 2752. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Cabanas, M.V.; Pena, J.; Sanchez-Salcedo, S. Design of 3D Scaffolds for Hard Tissue Engineering: From Apatites to Silicon Mesoporous Materials. Pharmaceutics 2021, 13, 1981. [Google Scholar] [CrossRef]
- Costa, W.B.; Felix Farias, A.F.; Cavalcanti Silva-Filho, E.; Osajima, J.A.; Medina-Carrasco, S.; Del Mar Orta, M.; Fonseca, M.G. Polysaccharide Hydroxyapatite (Nano) composites and Their Biomedical Applications: An Overview of Recent Years. ACS Omega 2024, 9, 30035–30070. [Google Scholar] [CrossRef]
- Nakagawa, S.; Xin, Y.; Nishikawa, H.; Yoneyama, R.; Nakagawa, T.; Yoshikawa, A.; Shirai, T. Synthesis of Hydroxyapatites via Wet Mechanochemical Process for Enhanced Catalytic Decomposition of Volatile Organic Compounds. Catal. Lett. 2024, 154, 582–592. [Google Scholar] [CrossRef]
- Kundu, B.; Soundrapandian, C.; Nandi, S.K.; Mukherjee, P.; Dandapat, N.; Roy, S.; Datta, B.K.; Mandal, T.K.; Basu, D.; Bhattacharya, R.N. Development of New Localized Drug Delivery System Based on Ceftriaxone-Sulbactam Composite Drug Impregnated Porous Hydroxyapatite: A Systematic Approach for In Vitro and In Vivo Animal Trial. Pharm. Res. 2010, 27, 1659–1676. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, Z.; Gao, J.; Wu, F.; Sun, B.; Lian, M.; Qian, J.; Su, Y.; Zhu, X.; Zhu, B. Hydroxyapatite–Bovine Serum Albumin–Paclitaxel Nanoparticles for Locoregional Treatment of Osteosarcoma. Adv. Healthcare Mater. 2021, 10, 2000573. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Roy, S.; Loganathan, G.; Mandal, B.; Dharumadurai, D.; Akbarsha, M.A.; Sengupta, P.S.; Chattopadhyay, S.; Guin, P.S. 1-Amino-4-hydroxy-9,10-anthraquinone—An analogue of anthracycline anticancer drugs, interacts with DNA and induces apoptosis in human MDA-MB-231 breast adenocarcinoma cells: Evaluation of structure–activity relationship using computational, spectroscopic and biochemical studies. Biochem. Biophys. Rep. 2015, 4, 312–323. [Google Scholar]
- Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Szurkowska, K.; Kolmas, J. Hydroxyapatites enriched in silicon—Bioceramic materials for biomedical and pharmaceutical applications. Prog. Nat. Sci. Mater. Int. 2017, 27, 401–409. [Google Scholar] [CrossRef]
- Marsh, J.D.; Smith, T.W. Piretanide: A loop-active diuretic. Pharmacology, therapeutic efficacy and adverse effects. Pharmacotherapy 1984, 4, 170–180. [Google Scholar] [CrossRef]
- Chikaraishi, Y.; Sano, A.; Tsujiyama, T.; Otsuka, M.; Matsuda, Y. Preparation of piretanide polymorphs and their physicochemical properties and dissolution behaviours. Chem. Pharm. Bull. 1994, 42, 1123–1128. [Google Scholar] [CrossRef]
- Chikaraishi, Y.; Otsuka, M.; Matsuda, Y. Preparation of amorphous and polymorph piretanide and their physicochemical properties and solubilities. Chem. Pharm. Bull. 1996, 44, 1614–1617. [Google Scholar] [CrossRef]
- Sistovaris, N.; Hamachi, Y.; Kuriki, T. Multifunctional substances—Determination of pKa-values by various methods. Fresenius J. Anal. Chem. 1991, 340, 345–349. [Google Scholar] [CrossRef]
- Guagliano, M.; Monteforte, F.; Bruni, G.; Friuli, V.; Maggi, L.; Quinzeni, I.; Bini, M. The peculiar dissolution behaviour of Piretanide hosted in layered double hydroxides. Appl. Clay Sci. 2020, 198, 105826. [Google Scholar] [CrossRef]
- Kovrlija, I.; Locs, J.; Loca, D. Incorporation of Barium Ions into Biomaterials: Dangerous Liaison or Potential Revolution? Materials 2021, 14, 5772. [Google Scholar] [CrossRef]
- Martinez, J.O.; Brown, B.; Quattrocchi, N.; Evangelopoulos, M.; Ferrari, M.; Tasciotti, E. Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Chin. Sci. Bull. 2012, 57, 3961–3971. [Google Scholar] [CrossRef] [PubMed]
- Stawarski, T.; Sieradzki, E.; Gałecka, E.; Binek, K. Kinetic study on ketoprofen release from mini tablets and multi-compartment systems. Acta Pol. Pharm. 2016, 73, 731–737. [Google Scholar] [PubMed]
- Shah, V.P.; Tsong, Y.; Sathe, P.; Liu, J.P. In vitro dissolution profile comparison—Statistics and analysis of the similarity factor, f2. Pharm. Res. 1998, 15, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Maggi, L.; Friuli, V.; Cerea, B.; Bruni, G.; Berbenni, V.; Bini, M. Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement. Molecules 2024, 29, 2419. [Google Scholar] [CrossRef]
- La Rocca, M.; Rinaldi, A.; Bruni, G.; Friuli, V.; Maggi, L.; Bini, M. New Emerging Inorganic–Organic Systems for Drug-Delivery: Hydroxyapatite@Furosemide Hybrids. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2249–2259. [Google Scholar] [CrossRef]
- Fowler, B.O. Infrared Studies of Apatites. I. Vibrational Assignments for Calcium, Strontium, and Barium Hydroxyapatites Utilizing Isotopic Substitution. Inorg. Chem. 1974, 13, 194. [Google Scholar] [CrossRef]
- Kadlec, K.; Adamska, K.; Voelkel, A. Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems. Talanta 2016, 147, 44–49. [Google Scholar] [CrossRef]
- Meejoo, S.; Maneeprakorn, W.; Winotai, P. Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim. Acta 2006, 447, 115–120. [Google Scholar] [CrossRef]
- Koppala, S.; Swamiappan, S.; Gangarajula, Y.; Xu, L.; Sadasivuni, K.K.; Ponnamma, D.; Rajagopalan, V. Calcium deficiency in hydroxyapatite and its drug delivery applications. Micro Nano Lett. 2018, 13, 562–564. [Google Scholar] [CrossRef]
- Charczuk, N.; Targonska, S.; Smieszek, A.; Sobierajska, P.; Kraszkiewicz, P.; Wiglusz, R.J. Multifunctional platform for future applications in cell and tissue engineering based on silicate phosphate hydroxyapatite co-doped with Li+, Eu3+ and Gd3+ ions. Materials Today Comm. 2024, 39, 108926. [Google Scholar] [CrossRef]
- Tavakoli, E.; Yarmand, B.; Soleimannejad, M.; Saeidifar, M. Improvement of biomedical properties of PEO-treated titanium with flurbiprofen and exosome conjugation. Surf. Interfaces 2024, 49, 104429. [Google Scholar] [CrossRef]
Samples | Ca (atomic %) | P (atomic %) | Dopant (atomic %) | S (atomic %) | Ca/P | Dopant/Ca or Dopant/P |
---|---|---|---|---|---|---|
HAP-Ba | 16.21 | 11.47 | 0.36 | 1.41 | 0.023 | |
HAP-Si | 12.02 | 7.83 | 0.14 | 1.53 | 0.02 | |
HAP-Ba-Pir | 14.61 | 10.08 | 0.47 | 0.12 | 1.45 | 0.032 |
HAP-Si-Pir | 10.66 | 7.33 | 0.2 | 0.2 | 1.45 | 0.027 |
Equilibrium Solubility at 21 °C (mg/L) | ||
---|---|---|
Samples | Deionized Water | HCl 0.1 N (pH 1.0) |
Piretanide | 35.1 ± 3.2 | 21.1 ± 0.7 |
HAP-Si-Pir | >155 | >60.9 |
HAP-Ba-Pir | >137 | >68.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friuli, V.; Loi, C.; Bruni, G.; Maggi, L.; Bini, M. A Perspective on the Use of Hydroxyapatites to Improve the Dissolution Behavior of Poorly Water-Soluble Piretanide. Pharmaceutics 2024, 16, 1450. https://doi.org/10.3390/pharmaceutics16111450
Friuli V, Loi C, Bruni G, Maggi L, Bini M. A Perspective on the Use of Hydroxyapatites to Improve the Dissolution Behavior of Poorly Water-Soluble Piretanide. Pharmaceutics. 2024; 16(11):1450. https://doi.org/10.3390/pharmaceutics16111450
Chicago/Turabian StyleFriuli, Valeria, Claudia Loi, Giovanna Bruni, Lauretta Maggi, and Marcella Bini. 2024. "A Perspective on the Use of Hydroxyapatites to Improve the Dissolution Behavior of Poorly Water-Soluble Piretanide" Pharmaceutics 16, no. 11: 1450. https://doi.org/10.3390/pharmaceutics16111450
APA StyleFriuli, V., Loi, C., Bruni, G., Maggi, L., & Bini, M. (2024). A Perspective on the Use of Hydroxyapatites to Improve the Dissolution Behavior of Poorly Water-Soluble Piretanide. Pharmaceutics, 16(11), 1450. https://doi.org/10.3390/pharmaceutics16111450