Next Article in Journal
Encapsulation of Black Seed Oil in Alginate Beads as a pH-Sensitive Carrier for Intestine-Targeted Drug Delivery: In Vitro, In Vivo and Ex Vivo Study
Next Article in Special Issue
Comparative Pharmacokinetics and Pharmacodynamics of a Novel Sodium-Glucose Cotransporter 2 Inhibitor, DWP16001, with Dapagliflozin and Ipragliflozin
Previous Article in Journal
Combined Effect of Midazolam and Bone Morphogenetic Protein-2 for Differentiation Induction from C2C12 Myoblast Cells to Osteoblasts
Previous Article in Special Issue
Large Volume Direct Injection Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry-Based Comparative Pharmacokinetic Study between Single and Combinatory Uses of Carthamus tinctorius Extract and Notoginseng Total Saponins
Open AccessArticle

Mertansine Inhibits mRNA Expression and Enzyme Activities of Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyltransferases in Human Hepatocytes and Liver Microsomes

Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
*
Author to whom correspondence should be addressed.
Pharmaceutics 2020, 12(3), 220; https://doi.org/10.3390/pharmaceutics12030220
Received: 18 February 2020 / Revised: 28 February 2020 / Accepted: 1 March 2020 / Published: 2 March 2020
(This article belongs to the Special Issue Drug Metabolism/Transport and Pharmacokinetics)
Mertansine, a tubulin inhibitor, is used as the cytotoxic component of antibody–drug conjugates (ADCs) for cancer therapy. The effects of mertansine on uridine 5′-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes and its effects on the mRNA expression of cytochrome P450s (CYPs) and UGTs in human hepatocytes were evaluated to assess the potential for drug–drug interactions (DDIs). Mertansine potently inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-β-glucuronidation, and UGT1A4-catalyzed trifluoperazine N-β-d-glucuronidation, with Ki values of 13.5 µM, 4.3 µM, and 21.2 µM, respectively, but no inhibition of UGT1A6, UGT1A9, and UGT2B7 enzyme activities was observed in human liver microsomes. A 48 h treatment of mertansine (1.25–2500 nM) in human hepatocytes resulted in the dose-dependent suppression of mRNA levels of CYP1A2, CYP2B6, CYP3A4, CYP2C8, CYP2C9, CYP2C19, UGT1A1, and UGT1A9, with IC50 values of 93.7 ± 109.1, 36.8 ± 18.3, 160.6 ± 167.4, 32.1 ± 14.9, 578.4 ± 452.0, 539.5 ± 233.4, 856.7 ± 781.9, and 54.1 ± 29.1 nM, respectively, and decreased the activities of CYP1A2-mediated phenacetin O-deethylase, CYP2B6-mediated bupropion hydroxylase, and CYP3A4-mediated midazolam 1′-hydroxylase. These in vitro DDI potentials of mertansine with CYP1A2, CYP2B6, CYP2C8/9/19, CYP3A4, UGT1A1, and UGT1A9 substrates suggest that it is necessary to carefully characterize the DDI potentials of ADC candidates with mertansine as a payload in the clinic. View Full-Text
Keywords: mertansine; human hepatocytes; cytochrome P450; UDP-glucuronosyltransferases; drug–drug interaction mertansine; human hepatocytes; cytochrome P450; UDP-glucuronosyltransferases; drug–drug interaction
Show Figures

Graphical abstract

MDPI and ACS Style

Choi, W.-G.; Park, R.; Kim, D.K.; Shin, Y.; Cho, Y.-Y.; Lee, H.S. Mertansine Inhibits mRNA Expression and Enzyme Activities of Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyltransferases in Human Hepatocytes and Liver Microsomes. Pharmaceutics 2020, 12, 220.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop