Abstract
Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a “gold standard” test and/or diagnostic protocols with extensive applicability have yet to be developed. The main challenges preventing the development of a universally accepted diagnostic tool with sufficient sensitivity, specificity, and accuracy to be integrated in SRLVs control programs are the genetic variability of SRLVs associated with mutations, recombination, and cross-species transmission and the peculiarities of small ruminants’ humoral immune response regarding late seroconversion, as well as intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available serological and molecular assays for the diagnosis of SRLVs, to highlight their diagnostic performance emphasizing on advantages and drawbacks of their application, and to discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient tools for the diagnosis of SRLVs infections.
1. Introduction
Small ruminant lentiviruses (SRLVs) are a group of non-oncogenic viruses of the family Retroviridae, that infect both sheep and goats causing chronic, incurable, inflammatory diseases known as maedi-visna (MV) and caprine arthritis-encephalitis (CAE) [1]. SRLVs are characterized by high genetic variability among genotypes (genotypes A (subtypes A1–A22), B (subtypes B1–B5), C, and E (subtypes E1–E2)) [2,3,4]. Nevertheless, they display similar pathogenesis affecting lungs, mammary gland, central nervous system and joints, and similar tropism by infecting monocytes/macrophages and dendritic cells [2,3,5]. Clinical manifestations of the disease in chronically infected animals include pneumonia and mastitis, encephalitis and arthritis; however, most infected animals are usually asymptomatic due to the slow and progressive evolution of the infection [1,5,6,7]. The primary source of infection for newborn lambs is the consumption of colostrum and milk from infected ewes (lactogenic route) [8,9]. Horizontal transmission via respiratory secretions is also significant, especially in intensively reared small ruminants [10,11], whereas transplacental transmission [12] and transmission via semen during mating or artificial insemination are also possible, but their significance and extent has not been thoroughly studied [8,13].
The economic impact of the SRLVs global spreading on the small ruminant sector has not yet been fully elucidated; however, it is widely recognized as a major cause of (i) increased replacement rate, resulting from the involuntary culling of animals with clinical disease, (ii) decreased lambs’ growth rate and milk production (quantitatively and qualitatively) due to the adverse effects on the secretory capacity of the mammary gland and (iii) restrictions in breeding stocks and semen trading [2,14,15,16].
Considering the lack of efficient treatment or vaccination, early and accurate diagnosis of SRLVs infections is paramount for the successful implementation of control programs, the eradication of MV and CAE, and the accreditation of SRLV-free regions and farms. Diagnosis of SRLVs is based either on the detection of SRLV-specific antibodies with serological tests such as agar gel immunodiffusion (AGID), enzyme-linked immunosorbent assay (ELISA), radioimmunoprecipitation (RIPA), radioimmunoassay (RIA) and Western blot (WB), or on the detection of viral genome with molecular assays (e.g., polymerase chain reaction (PCR), real time PCR (qPCR)) and virus isolation in cell cultures [17]. Viral capsid and matrix proteins (p25CA, p28CA, p14NC and p16MA), and envelope glycoproteins (gp135SU, gp46TM) coded by the gag and env genes, respectively, are commonly used as antigens for the detection of SRLV-specific antibodies, whereas long terminal repeats (LTRs) of proviral DNA, and conserved regions in the pol, gag and env genes are used as targets for primers used in molecular assays [6,18,19].
Lack of a “gold standard” assay for the early diagnosis of SRLVs infections, has led to various types and combinations of serological and molecular assays being utilized in eradication programs around the world with variable efficacy [20,21,22,23,24,25,26,27,28,29,30]. The limited success of the currently applied programs to control the disease implies that some of the infected animals evade diagnosis acting as virus reservoirs for the establishment of re-infections. Τhis situation perpetuates the economic impact of SRLVs infections, increases the uncertainty and the cost of the invested resources for SRLVs eradication, and last but not least, reduces the willingness of farmers to participate in control programs.
Currently, universally applicable diagnostic tools are not available, and the development of highly sensitive and specific diagnostic protocol is a priority. Development of efficient diagnostic tools is a challenging task due to (i) the genetic variability of SRLVs associated with mutations, recombination and cross-species transmission, and (ii) the peculiarities of small ruminants’ humoral immune response regarding late seroconversion, intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available diagnostic assays and methods routinely used in SRLVs control programs emphasizing on their applications, advantages, and drawbacks, and to describe and discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient diagnostic tools for SRLVs.
3. Current and Future Perspectives in Diagnosis of SRLV Infections
Diagnosis of lentiviral infections constitutes the cornerstone for the successful implementation of eradication programs. A “gold standard” test with high values of sensitivity, specificity and accuracy, blindly used in every case does not seem readily feasible when considering the special characteristics of SRLVs (i.e., high genetic variability, mechanisms of virus replication, and animal humoral immune response). Nonetheless, the scientific community has addressed these limitations, proposing targeted combinations of diagnostic tools, which are constantly evaluated to reduce the possibility of both newly or persistently infected animals to evade diagnosis [27,39,62,63,70,82,86,101,102]. Although combination of diagnostics increases cost, time, and the effort required, it seems to be inevitable for the early and safe diagnosis in young animals which are likely infected but seronegative. However, in lambs early diagnosis may be limited by interference of maternal antibodies or provirus transmitted during suckling or milk aspiration [103].
Genotyping and classification of the circulating SRLVs strains in a specific region/breed could permit the targeted application of appropriate serological and molecular tests. In this direction, combined peptide ELISAs with type-specific epitopes from multiple genotypes could be tested in old and/or symptomatic animals and in mixed flocks (cross-species transmission and recombination) before the design of primers for PCR-based methods. Additionally, diagnostic tools should be adapted in a more animal- and farmer-friendly framework, utilizing biological materials with less invasive sample collection techniques. For example, milk is a promising alternative to blood and in many cases exhibits satisfying concordance with the results obtained from serum and whole blood samples both on serological and PCR assays; however, standardization of milk as sampling matrix and further verification in the field is needed for its use in serological and molecular tests. Particularly, in the case of highly sensitive screening tests, bulk milk samples could be incorporated as SRLVs-status determination tests for the initial characterization of a flock as SRLVs-infected or free. Newly developed technologies used in the HIV diagnosis such as specific antibody-antigen biomarkers or dried-blood spot testing [104] could be exploited in combination with LAMP and RPA-LFD techniques on SRLVs diagnosis for the development of in situ, rapid, user-friendly, cost-effective, and reliable diagnostic tools. In future, point-of-care (POC) testing of small ruminant infectious diseases in mobile platform technologies could integrate SRLVs diagnostic assays contributing to the control and elimination of critical epidemic and endemic diseases, including MV and CAE.
4. Impact of Early and Efficient SRLVs Diagnosis
Early and effective diagnosis of SRLVs and subsequently the control of MV and CAE are both critical endeavors for countries with a developed small ruminant farming sector. In addition, until now the applied programs for the eradication of SRLVs have not been scheduled based on a common diagnostic protocol, which allows deviations in the interpretation of requirements for the accreditation of SRLV-free regions and farms. Research on SRLVs diagnostics will form the steppingstone for the surveillance of the disease and the investigation of alternative control strategies. Linking the epidemiological characteristics of the disease with the use of novel and more efficient diagnostic techniques can ensure an integrated approach for the control of the disease in practice.
The economic impact of SRLVs early diagnosis is likely enormous, as both MV and CAE are associated with dramatic, direct, and indirect economic losses, which undermine the sustainability of the farms. The magnitude of economic losses caused by the diseases is determined by factors related to their clinical symptoms and epidemiology at the farm level. The effective control of the diseases may drastically reduce monetary losses associated with the detrimental effects on health, welfare, and productivity of animals, while early diagnosis will facilitate for the first time the large-scale production of certified SRLVs-free breeding stocks, enjoying the expected added-value. The enhancement of the economic sustainability of farms will further facilitate the development of the sector and the eligibility of the small ruminant farming profession. It will also contribute to the survival of farmers in the provinces, particularly in disadvantaged and remote areas, where livestock farming is one of the most important, main, or complementary sources of income. Moreover, animal health and welfare status will be significantly improved via early diagnosis of SRLV infections, and the requirement for safe products of animal origin, produced by healthy animals that live “a life worth living”, will be satisfied.
Supplementary Materials
The following are available online at https://www.mdpi.com/article/10.3390/v13091711/s1, Table S1: Primer sequences of PCR techniques referred in Table 2.
Author Contributions
Conceptualization, I.B., A.I.G. and A.I.K.; writing—original draft preparation, A.I.K., I.S. and A.I.G.; writing—review and editing, S.C.C., A.I.G. and I.B.; supervision, A.I.G. All authors have read and agreed to the published version of the manuscript.
Funding
The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: HFRI-FM17-1083).
Conflicts of Interest
None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.
References
- Minguijón, E.; Reina, R.; Pérez, M.; Polledo, L.; Villoria, M.; Ramírez, H.; Leginagoikoa, I.; Badiola, J.J.; García-Marín, J.F.; de Andrés, D.; et al. Small ruminant lentivirus infections and diseases. Vet. Microbiol. 2015, 181, 75–89. [Google Scholar] [CrossRef]
- Ramírez, H.; Reina, R.; Amorena, B.; de Andrés, D.; Martínez, H.A. Small ruminant Lentiviruses: Genetic variability, tropism and diagnosis. Viruses 2013, 5, 1175–1207, ISBN 5255562319. [Google Scholar] [CrossRef] [PubMed]
- Molaee, V.; Bazzucchi, M.; De Mia, G.M.; Otarod, V.; Abdollahi, D.; Rosati, S.; Lühken, G. Phylogenetic analysis of small ruminant lentiviruses in Germany and Iran suggests their expansion with domestic sheep. Sci. Rep. 2020, 10, 2243. [Google Scholar] [CrossRef]
- Michiels, R.; Adjadj, N.R.; De Regge, N. Phylogenetic analysis of belgian small ruminant lentiviruses supports cross species virus transmission and identifies new subtype B5 strains. Pathogens 2020, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Blacklaws, B.A. Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 259–269. [Google Scholar] [CrossRef]
- Gomez-Lucia, E.; Barquero, N.; Domenech, A. Maedi-Visna virus: Current perspectives. Vet. Med. Res. Rep. 2018, 9, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Gayo, E.; Polledo, L.; Balseiro, A.; Martínez, C.P.; García Iglesias, M.J.; Preziuso, S.; Rossi, G.; García Marín, J.F. Inflammatory Lesion Patterns in Target Organs of Visna/Maedi in Sheep and their Significance in the Pathogenesis and Diagnosis of the Infection. J. Comp. Pathol. 2018, 159, 49–56. [Google Scholar] [CrossRef]
- Blacklaws, B.A.; Berriatua, E.; Torsteinsdottir, S.; Watt, N.J.; De Andres, D.; Klein, D.; Harkiss, G.D. Transmission of small ruminant lentiviruses. Vet. Microbiol. 2004, 101, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, G.; Bertoni, G.; Manarolla, G.; Vogt, H.R.; Scaccabarozzi, L.; Locatelli, C.; Moroni, P. Genetic analysis of small ruminant lentiviruses following lactogenic transmission. Virology 2010, 407, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Illius, A.W.; Lievaart-Peterson, K.; McNeilly, T.N.; Savill, N.J. Epidemiology and control of maedi-visna virus: Curing the flock. PLoS ONE 2020, 15, e0238781. [Google Scholar] [CrossRef]
- Broughton-Neiswanger, L.E.; White, S.N.; Knowles, D.P.; Mousel, M.R.; Lewis, G.S.; Herndon, D.R.; Herrmann-Hoesing, L.M. Non-maternal transmission is the major mode of ovine lentivirus transmission in a ewe flock: A molecular epidemiology study. Infect. Genet. Evol. 2010, 10, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.F.; Andrioli, A.; Pinheiro, R.R.; Sider, L.H.; de Sousa, A.L.M.; de Azevedo, D.A.A.; Peixoto, R.M.; Lima, A.M.C.; Damasceno, E.M.; Souza, S.C.R.; et al. Vertical transmissibility of small ruminant lentivirus. PLoS ONE 2020, 15, e0239916. [Google Scholar] [CrossRef]
- Cortez-Romero, C.; Pellerin, J.L.; Ali-Al-Ahmad, M.Z.; Chebloune, Y.; Gallegos-Sánchez, J.; Lamara, A.; Pépin, M.; Fieni, F. The risk of small ruminant lentivirus (SRLV) transmission with reproductive biotechnologies: State-of-the-art review. Theriogenology 2013, 79, 1–9. [Google Scholar] [CrossRef]
- Benavides, J.; Fuertes, M.; García-Pariente, C.; Otaola, J.; Delgado, L.; Giraldez, J.; García Marín, J.F.; Carmen Ferreras, M.; Pérez, V. Impact of maedi-visna in intensively managed dairy sheep. Vet. J. 2013, 197, 607–612. [Google Scholar] [CrossRef]
- Kalogianni, A.I.; Bossis, I.; Ekateriniadou, L.V.; Gelasakis, A.I. Etiology, Epizootiology and Control of Maedi-Visna in Dairy Sheep: A Review. Animals 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, D.; Czopowicz, M.; Bagnicka, E.; Rzewuska, M.; Strzałkowska, N.; Kaba, J. Influence of small ruminant lentivirus infection on cheese yield in goats. J. Dairy Res. 2015, 82, 102–106. [Google Scholar] [CrossRef]
- OIE. Chapter 3.7.2-Caprine arthritis/encephalitis & Maedi-visna. In OIE Terrestrial manual 2018; OIE: Paris, France, 2018; pp. 1420–1429. [Google Scholar]
- De Andrés, D.; Klein, D.; Watt, N.J.; Berriatua, E.; Torsteinsdottir, S.; Blacklaws, B.A.; Harkiss, G.D. Diagnostic tests for small ruminant lentiviruses. Vet. Microbiol. 2005, 107, 49–62. [Google Scholar] [CrossRef]
- Herrmann-Hoesing, L.M. Diagnostic assays used to control small ruminant lentiviruses. J. Vet. Diagnostic Investig. 2010, 22, 843–855. [Google Scholar] [CrossRef]
- Polledo, L.; González, J.; Fernández, C.; Miguélez, J.; Martínez-Fernández, B.; Morales, S.; Ferreras, M.C.; Marín, J.F.G. Simple control strategy to reduce the level of Maedi-Visna infection in sheep flocks with high prevalence values (>90%). Small Rumin. Res. 2013, 112, 224–229. [Google Scholar] [CrossRef]
- Modolo, J.R.; Stachissini, A.V.M.; Padovani, C.R.; Araujo, J.P.; Castro, R.S.; Ravazzolo, A.P.; Leite, B.L.S. PCR associated with agar gel immunodiffusion assay improve caprine arthritis-encephalitis (CAEV) control. Small Rumin. Res. 2009, 81, 18–20. [Google Scholar] [CrossRef]
- Synge, B.A.; Ritchie, C.M. Elimination of small ruminant lentivirus infection from sheep flocks and goat herds aided by health schemes in Great Britain. Vet. Rec. 2010, 167, 739–743. [Google Scholar] [CrossRef]
- Sihvonen, L.; Nuotio, L.; Rikula, U.; Hirvelä-Koski, V.; Kokkonen, U.M. Preventing the spread of maedi-visna in sheep through a voluntary control programme in Finland. Prev. Vet. Med. 2000, 47, 213–220. [Google Scholar] [CrossRef]
- Pérez, M.; Biescas, E.; de Andrés, X.; Leginagoikoa, I.; Salazar, E.; Berriatua, E.; Reina, R.; Bolea, R.; de Andrés, D.; Juste, R.A.; et al. Visna/maedi virus serology in sheep: Survey, risk factors and implementation of a successful control programme in Aragón (Spain). Vet. J. 2010, 186, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Cirone, F.; Maggiolino, A.; Cirilli, M.; Sposato, A.; De Palo, P.; Ciappetta, G.; Pratelli, A. Small ruminant lentiviruses in goats in southern Italy: Serological evidence, risk factors and implementation of control programs. Vet. Microbiol. 2019, 228, 143–146. [Google Scholar] [CrossRef]
- Pérez, M.; Muñoz, J.A.; Biescas, E.; Salazar, E.; Bolea, R.; de Andrés, D.; Amorena, B.; Badiola, J.J.; Reina, R.; Luján, L. Successful Visna/maedi control in a highly infected ovine dairy flock using serologic segregation and management strategies. Prev. Vet. Med. 2013, 112, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Michiels, R.; Van Mael, E.; Quinet, C.; Adjadj, N.R.; Cay, A.B.; De Regge, N. Comparative analysis of different serological and molecular tests for the detection of small ruminant lentiviruses (Srlvs) in Belgian sheep and goats. Viruses 2018, 10, 8–10. [Google Scholar] [CrossRef]
- Nord, K.; Løken, T.; Orten, Å. Control of caprine arthritis-encephalitis virus infection in three Norwegian goat herds. Small Rumin. Res. 1998, 28, 109–114. [Google Scholar] [CrossRef]
- Kaba, J.; Bagnicka, E.; Czopowicz, M.; Nowicki, M.; Witkowski, L.; Szaluoe-Jordanow, O. Long-term study on the spread of caprine arthritis-encephalitis in a goat herd. Cent. J. Immunol. 2011, 36, 170–173. [Google Scholar]
- Peterhans, E.; Greenland, T.; Badiola, J.; Harkiss, G.; Bertoni, G.; Amorena, B.; Eliaszewicz, M.; Juste, R.A.; Kraßnig, R.; Lafont, J.-P.; et al. Routes of transmission and consequences of small ruminant lentiviruses (SRLVs) infection and eradication schemes. Vet. Res. 2004, 35, 257–274. [Google Scholar] [CrossRef]
- Kampen, A.H.; Tharaldsen, J.; Mork, J.; Grøneng, G. Surveillance and Control Programmes for Terrestrial and Aquatic Animals in Norway; National Veterinary Institute: Oslo, Norway, 2008. [Google Scholar]
- Toft, N.; Åkerstedt, J.; Tharaldsen, J.; Hopp, P. Evaluation of three serological tests for diagnosis of Maedi-Visna virus infection using latent class analysis. Vet. Microbiol. 2007, 120, 77–86. [Google Scholar] [CrossRef]
- Singh, I.; McConnell, I.; Blacklaws, B. Immune Response to Individual Maedi-Visna Virus gag Antigens. J. Virol. 2006, 80, 912–919. [Google Scholar] [CrossRef]
- Barquero, N.; Domenech, A.; Gomez-lucia, E. Caprine Arthritis–Encephalitis Virus. In Molecular Detection of Animal Viral Pathogens; Liu, D., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 157–162. [Google Scholar]
- Houwers, D.J.; König, C.D.; Bakker, J.; de Boer, M.J.; Pekelder, J.J.; Sol, J.; Vellema, P.; de Vries, G. Maedi-visna control in sheep. III: Results and evaluation of a voluntary control program in The Netherlands over a period of four years. Vet. Q. 1987, 9 (Suppl. S1), 29–36. [Google Scholar] [CrossRef][Green Version]
- Tavella, A.; Bettini, A.; Ceol, M.; Zambotto, P.; Stifter, E.; Kusstatscher, N.; Lombardi, R.; Nardeli, S.; Beato, M.S.; Capello, K.; et al. Achievements of an eradication programme against caprine arthritis encephalitis virus in South Tyrol, Italy. Vet. Rec. 2018, 182, 51. [Google Scholar] [CrossRef]
- Cardinaux, L.; Zahno, M.L.; Deubelbeiss, M.; Zanoni, R.; Vogt, H.R.; Bertoni, G. Virological and phylogenetic characterization of attenuated small ruminant lentivirus isolates eluding efficient serological detection. Vet. Microbiol. 2013, 162, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Schlup, B. SU5-Peptid-ELISA als zusätzliches Bestätigungsverfahren für die SRLV-Diagnostik. Ph.D. Thesis, Institut für Veterinär-Virologie der Universität Bern, Bern, Switzerland, 2009. [Google Scholar]
- De Martin, E.; Golomingi, A.; Zahno, M.L.; Cachim, J.; Di Labio, E.; Perler, L.; Abril, C.; Zanoni, R.; Bertoni, G. Diagnostic response to a cross-border challenge for the Swiss caprine arthritis encephalitis virus eradication program. Schweiz. Arch. Tierheilkd. 2019, 161, 93–104. [Google Scholar] [CrossRef]
- Mordasini, F.; Vogt, H.R.; Zahno, M.L.; Maeschli, A.; Nenci, C.; Zanoni, R.; Peterhans, E.; Bertoni, G. Analysis of the antibody response to an immunodominant epitope of the envelope glycoprotein of a lentivirus and its diagnostic potential. J. Clin. Microbiol. 2006, 44, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Rosati, S.; Kwang, J.; Tolari, F.; Keen, J. A comparison of whole virus and recombinant transmembrane ELISA and immunodiffusion for detection of ovine lentivirus antibodies in Italian sheep flocks. Vet. Res. Commun. 1994, 18, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Heckert, R.A.; McNab, W.B.; Richardson, S.M.; Briscoe, M.R. Evaluation of an enzyme-linked immunosorbent assay for the detection of antibodies to caprine arthritis-encephalitis virus in goat serum. Can. J. Vet. Res. 1992, 56, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, L.M.; Cheevers, W.P.; Marshall, K.L.; McGuire, T.C.; Hutton, M.M.; Lewis, G.S.; Knowles, D.P. Detection of serum antibodies to ovine progressive pneumonia virus in sheep by using a caprine arthritis-encephalitis virus competitive-inhibition enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 2003, 10, 862–865. [Google Scholar] [CrossRef]
- Herrmann, L.M.; Cheevers, W.P.; McGuire, T.C.; Adams, D.S.; Hutton, M.M.; Gavin, W.G.; Knowles, D.P. Competitive-inhibition enzyme-linked immunosorbent assay for detection of serum antibodies to caprine arthritis-encephalitis virus: Diagnostic tool for successful eradication. Clin. Diagn. Lab. Immunol. 2003, 10, 267–271. [Google Scholar] [CrossRef]
- Houwers, D.J.; Schaake, J. An improved ELISA for the detection of antibodies to ovine and caprine lentiviruses, employing monoclonal antibodies in a one-step assay. J. Immunol. Methods 1987, 98, 151–154. [Google Scholar] [CrossRef]
- Saman, E.; Van Eynde, G.; Lujan, L.; Extramiana, B.; Harkiss, G.; Tolari, F.; Gonzàlez, L.; Amorena, B.; Watt, N.; Badiola, J. A new sensitive serological assay for detection of lentivirus infections in small ruminants. Clin. Diagn. Lab. Immunol. 1999, 6, 734–740. [Google Scholar] [CrossRef]
- Adjadj, N.R.; Vicca, J.; Michiels, R.; De Regge, N. (Non-)sense of milk testing in small ruminant lentivirus control programs in goats. Comparative analysis of antibody detection and molecular diagnosis in blood and milk. Viruses 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Barquero, N.; Arjona, A.; Domenech, A.; Toural, C.; De Las Heras, A.; Fernández-Garayzabal, J.F.; Ruiz-Santa Quiteria, J.A.; Gomez-Lucia, E. Paper: Diagnostic performance of PCR and ELISA on blood and milk samples and serological survey for small ruminant lentiviruses in central Spain. Vet. Rec. 2011, 168, 20. [Google Scholar] [CrossRef] [PubMed]
- Brinkhof, J.M.A.; Houwers, D.J.; Moll, L.; Dercksen, D.; van Maanen, C. Diagnostic performance of ELISA and PCR in identifying SRLV-infected sheep and goats using serum, plasma and milk samples and in early detection of infection in dairy flocks through bulk milk testing. Vet. Microbiol. 2010, 142, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, M.; Carrozza, M.L.; Bandecchi, P.; Mazzanti, G.; Mannelli, A.; Tolari, F. Evaluation of an ELISA to detect antibodies to maedi-visna virus in individual and pooled samples of milk from sheep. Vet. Rec. 2005, 157, 552–555. [Google Scholar] [CrossRef]
- Potărniche, A.V.; Czopowicz, M.; Szaluś-Jordanow, O.; Moroz, A.; Mickiewicz, M.; Witkowski, L.; Markowska-Daniel, I.; Bagnicka, E.; Cerbu, C.; Olah, D.; et al. Diagnostic accuracy of three commercial immunoenzymatic assays for small ruminant lentivirus infection in goats performed on individual milk samples. Prev. Vet. Med. 2021, 191. [Google Scholar] [CrossRef]
- Barquero, N.; Gomez-Lucia, E.; Arjona, A.; Toural, C.; Las Heras, A.; Fernández-Garayzabal, J.F.; Domenech, A. Evolution of specific antibodies and proviral DNA in milk of small ruminants infected by small ruminant lentivirus. Viruses 2013, 5, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Sánchez, A.; Corrales, J.C.; De la Fe, C.; Contreras, A. Caprine arthritis encephalitis virus diagnosed by ELISA in lactating goats using milk samples. Small Rumin. Res. 2009, 81, 189–192. [Google Scholar] [CrossRef]
- Lacerenza, D.; Giammarioli, M.; Grego, E.; Marini, C.; Profiti, M.; Rutili, D.; Rosati, S. Antibody response in sheep experimentally infected with different small ruminant lentivirus genotypes. Vet. Immunol. Immunopathol. 2006, 112, 264–271. [Google Scholar] [CrossRef]
- Brinkhof, J.; Van Maanen, C. Evaluation of five enzyme-linked immunosorbent assays and an agar gel immunodiffusion test for detection of antibodies to small ruminant lentiviruses. Clin. Vaccine Immunol. 2007, 14, 1210–1214. [Google Scholar] [CrossRef]
- Sardi, S.I.; Torres, J.A.; Brandão, C.F.L.; Tigre, D.M.; Campos, G.S. Early Detection of goats infected with Lentivirus Small Ruminant virus by ELISA assay. Rev. Ciências Méd. Biol. 2012, 11, 35. [Google Scholar] [CrossRef]
- Sanjosé, L.; Pinczowski, P.; Crespo, H.; Pérez, M.; Glaria, I.; Gimeno, M.; de Andrés, D.; Amorena, B.; Luján, L.; Reina, R. Diagnosing infection with small ruminant lentiviruses of genotypes A and B by combining synthetic peptides in ELISA. Vet. J. 2015, 204, 88–93. [Google Scholar] [CrossRef] [PubMed][Green Version]
- de Andrés, X.; Ramírez, H.; Bertolotti, L.; San Román, B.; Glaria, I.; Crespo, H.; Jáuregui, P.; Minguijón, E.; Juste, R.; Leginagoikoa, I.; et al. An insight into a combination of ELISA strategies to diagnose small ruminant lentivirus infections. Vet. Immunol. Immunopathol. 2013, 152, 277–288. [Google Scholar] [CrossRef]
- Nogarol, C.; Bertolotti, L.; Klevar, S.; Profiti, M.; Gjerset, B.; Rosati, S. Serological characterization of small ruminant lentiviruses: A complete tool for serotyping lentivirus infection in goat. Small Rumin. Res. 2019, 176, 42–46. [Google Scholar] [CrossRef]
- Reina, R.; Grego, E.; Profiti, M.; Glaria, I.; Robino, P.; Quasso, A.; Amorena, B.; Rosati, S. Development of specific diagnostic test for small ruminant lentivirus genotype E. Vet. Microbiol. 2009, 138, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Leginagoikoa, I.; Minguijón, E.; Berriatua, E.; Juste, R.A. Improvements in the detection of small ruminant lentivirus infection in the blood of sheep by PCR. J. Virol. Methods 2009, 156, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, H.; Echeverría, I.; Benito, A.A.; Glaria, I.; Benavides, J.; Pérez, V.; de Andrés, D.; Reina, R. Accurate diagnosis of small ruminant lentivirus infection is needed for selection of resistant sheep through tmem154 e35k genotyping. Pathogens 2021, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, I.; De Miguel, R.; De Pablo-Maiso, L.; Glaria, I.; Benito, A.A.; De Blas, I.; De Andrés, D.; Luján, L.; Reina, R. Multi-Platform Detection of Small Ruminant Lentivirus Antibodies and Provirus as Biomarkers of Production Losses. Front. Vet. Sci. 2020, 7, 182. [Google Scholar] [CrossRef]
- Nowicka, D.; Czopowicz, M.; Mickiewicz, M.; Szalus-Jordanow, O.; Witkowski, L.; Bagnicka, E.; Kaba, J. Diagnostic performance of ID Screen® MVV-CAEV Indirect Screening ELISA in identifying small ruminant lentiviruses-infected goats. Pol. J. Vet. Sci. 2014, 17, 501–506. [Google Scholar] [CrossRef][Green Version]
- Varea, R.; Monleón, E.; Pacheco, C.; Luján, L.; Bolea, R.; Vargas, M.A.; Van Eynde, G.; Saman, E.; Dickson, L.; Harkiss, G.; et al. Early detection of maedi-visna (ovine progressive pneumonia) virus seroconversion in field sheep samples. J. Vet. Diagnostic Investig. 2001, 13, 301–307. [Google Scholar] [CrossRef]
- Zanoni, R.G.; Vogt, H.-R.; Pohl, B.; Böttcher, J.; Bommeli, W.; Peterhans, E. An ELISA Based on Whole Virus for the Detection of Antibodies to Small-ruminant Lentiviruses. J. Vet. Med. Ser. B 1994, 41, 662–669. [Google Scholar] [CrossRef]
- Reina, R.; Berriatua, E.; Luján, L.; Juste, R.; Sánchez, A.; de Andrés, D.; Amorena, B. Prevention strategies against small ruminant lentiviruses: An update. Vet. J. 2009, 182, 31–37. [Google Scholar] [CrossRef]
- Angelopoulou, K.; Brellou, G.D.; Vlemmas, I. Detection of Maedi-Visna Virus in the Kidneys of Naturally Infected Sheep. J. Comp. Pathol. 2006, 134, 329–335. [Google Scholar] [CrossRef]
- Brellou, G.D.; Angelopoulou, K.; Poutahidis, T.; Vlemmas, I. Detection of Maedi-Visna Virus in the Liver and Heart of Naturally Infected Sheep. J. Comp. Pathol. 2007, 136, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Extramiana, A.B.; González, L.; Cortabarría, N.; García, M.; Juste, R.A. Evaluation of a PCR technique for the detection of Maedi-Visna proviral DNA in blood, milk and tissue samples of naturally infected sheep. Small Rumin. Res. 2002, 44, 109–118. [Google Scholar] [CrossRef]
- Leroux, C.; Lerondelle, C.; Chastang, J.; Mornex, J.F. RT-PCR detection of lentiviruses in milk or mammary secretions of sheep or goats from infected flocks. Vet. Res. 1997, 28, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Pinczowski, P.; Sanjosé, L.; Gimeno, M.; Crespo, H.; Glaria, I.; Amorena, B.; de Andrés, D.; Pérez, M.; Reina, R.; Luján, L. Small Ruminant Lentiviruses in Sheep: Pathology and Tropism of 2 Strains Using the Bone Marrow Route. Vet. Pathol. 2017, 54, 413–424. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, P.; Singh, R.; Dhama, K.; Kumari, S.; Yadav, J.P.; Kashyap, G.; Singh, K.P.; Singh, V.; Sahoo, M. Pathology and polymerase chain reaction detection of ovine progressive pneumonia (maedi) cases in slaughtered sheep in India. Vet. World 2017, 10, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.; Brinkhof, J.; Houwers, D.J.; Colenbrander, B.; Gadella, B.M. Presence of pro-lentiviral DNA in male sexual organs and ejaculates of small ruminants. Theriogenology 2008, 69, 433–442. [Google Scholar] [CrossRef]
- Villoria, M.; Leginagoikoa, I.; Luján, L.; Pérez, M.; Salazar, E.; Berriatua, E.; Juste, R.A.; Minguijón, E. Detection of Small Ruminant Lentivirus in environmental samples of air and water. Small Rumin. Res. 2013, 110, 155–160. [Google Scholar] [CrossRef]
- Zanoni, R.; Pauli, U.; Peterhans, E. Detection of caprine arthritis-encephalitis- and maedi-visna viruses using the polymerase chain reaction. Experientia 1990, 46, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Gjerset, B.; Rimstad, E.; Teige, J.; Soetaert, K.; Jonassen, C.M. Impact of natural sheep-goat transmission on detection and control of small ruminant lentivirus group C infections. Vet. Microbiol. 2009, 135, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Panneum, S.; Rukkwamsuk, T. Diagnosis of Caprine Arthritis Encephalitis Virus infection in dairy goats by ELISA, PCR and Viral Culture. Pol. J. Vet. Sci. 2017, 20, 347–353. [Google Scholar] [CrossRef]
- Olech, M.; Rachid, A.; Croisé, B.; Kuźmak, J.; Valas, S. Genetic and antigenic characterization of small ruminant lentiviruses circulating in Poland. Virus Res. 2012, 163, 528–536. [Google Scholar] [CrossRef]
- Eltahir, Y.M.; Dovas, C.I.; Papanastassopoulou, M.; Koumbati, M.; Giadinis, N.; Verghese-Nikolakaki, S.; Koptopoulos, G. Development of a semi-nested PCR using degenerate primers for the generic detection of small ruminant lentivirus proviral DNA. J. Virol. Methods 2006, 135, 240–246. [Google Scholar] [CrossRef]
- Barquero, N.; Domenech, A.; Arjona, A.; Fernández-Garayzabal, J.F.; Ruiz-Santa-Quiteria, J.A.; Gomez-Lucia, E. Comparison of two PCR and one ELISA techniques for the detection of small ruminant lentiviruses (SRLVs) in milk of sheep and goats. Res. Vet. Sci. 2013, 94, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Brinkhof, J.M.A.; van Maanen, C.; Wigger, R.; Peterson, K.; Houwers, D.J. Specific detection of small ruminant lentiviral nucleic acid sequences located in the proviral long terminal repeat and leader-gag regions using real-time polymerase chain reaction. J. Virol. Methods 2008, 147, 338–344. [Google Scholar] [CrossRef]
- Kuhar, U.; Barlič-Maganja, D.; Grom, J. Development and validation of TaqMan probe based real time PCR assays for the specific detection of genotype A and B small ruminant lentivirus strains. BMC Vet. Res. 2013, 9, 172. [Google Scholar] [CrossRef]
- Chassalevris, T.; Chaintoutis, S.C.; Apostolidi, E.D.; Giadinis, N.D.; Vlemmas, I.; Brellou, G.D.; Dovas, C.I. A highly sensitive semi-nested real-time PCR utilizing oligospermine-conjugated degenerate primers for the detection of diverse strains of small ruminant lentiviruses. Mol. Cell. Probes 2020, 51, 101528. [Google Scholar] [CrossRef]
- Brajon, G. Development and Field Testing of a Real-Time PCR Assay for Caprine Arthritis-Encephalitis-Virus (CAEV). Open Virol. J. 2012, 6, 82–90. [Google Scholar] [CrossRef]
- De Regge, N.; Cay, B. Development, validation and evaluation of added diagnostic value of a q(RT)-PCR for the detection of genotype A strains of small ruminant lentiviruses. J. Virol. Methods 2013, 194, 250–257. [Google Scholar] [CrossRef]
- Psifidi, A.; Dovas, C.I.; Banos, G. A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples. Mol. Cell. Probes 2010, 24, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Watt, N.J.; Hopkins, J.; Harkiss, G.; Woodall, C.J. Quantitative analysis of maedi-visna virus DNA load in peripheral blood monocytes and alveolar macrophages. J. Virol. Methods 2000, 86, 13–20. [Google Scholar] [CrossRef]
- Highland, M.A. Small Ruminant Lentiviruses: Strain Variation, Viral Tropism, and Host Genetics Influence Pathogenesis. Vet. Pathol. 2017, 54, 353–354. [Google Scholar] [CrossRef]
- Zanoni, R.G.; Nauta, I.M.; Kuhnert, P.; Pauli, U.; Pohl, B.; Peterhans, E. Genomic heterogeneity of small ruminant lentiviruses detected by PCR. Vet. Microbiol. 1992, 33, 341–351. [Google Scholar] [CrossRef]
- Dolfini, T.; Conrad, L.F.; Flores, I.V.C.; Ravazzolo, A.P. Comparison of primer pairs: Greater degeneracy improves small ruminant lentivirus (SRLVs) detection by seminested PCR. Small Rumin. Res. 2015, 123, 189–192. [Google Scholar] [CrossRef]
- Germain, K.; Valas, S. Distribution and heterogeneity of small ruminant lentivirus envelope subtypes in naturally infected French sheep. Virus Res. 2006, 120, 156–162. [Google Scholar] [CrossRef]
- Germain, K.; Croise, B.; Valas, S. Field evaluation of a gag/env heteroduplex mobility assay for genetic subtyping of small-ruminant lentiviruses. J. Gen. Virol. 2008, 89, 2020–2028. [Google Scholar] [CrossRef]
- Pisoni, G.; Bertoni, G.; Puricelli, M.; Maccalli, M.; Moroni, P. Demonstration of Coinfection with and Recombination by Caprine Arthritis-Encephalitis Virus and Maedi-Visna Virus in Naturally Infected Goats. J. Virol. 2007, 81, 4948–4955. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, G.; Moroni, P.; Turin, L.; Bertoni, G. Compartmentalization of small ruminant lentivirus between blood and colostrum in infected goats. Virology 2007, 369, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Sun, Y.; Liu, Y.; Xiao, H.; Zhuang, S. Development of a loop-mediated isothermal amplification method for rapid detection of caprine arthritis-encephalitis virus proviral DNA. Arch. Virol. 2012, 157, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Balbin, M.M.; Belotindos, L.P.; Abes, N.S.; Mingala, C.N. Caprine arthritis encephalitis virus detection in blood by loop-mediated isothermal amplification (LAMP) assay targeting the proviral gag region. Diagn. Microbiol. Infect. Dis. 2014, 79, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.A.; Shiu, J.S.; Lee, S.H.; Pang, V.F.; Wang, D.C.; Wang, P.H. Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection. J. Virol. Methods 2017, 243, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.C.; Andrésdóttir, V.; Fevereiro, M. Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences. Arch. Virol. 2005, 150, 201–213. [Google Scholar] [CrossRef]
- Colitti, B.; Coradduzza, E.; Puggioni, G.; Capucchio, M.T.; Reina, R.; Bertolotti, L.; Rosati, S. A new approach for small ruminant lentivirus full genome characterization revealed the circulation of divergent strains. PLoS ONE 2019, 14, e0212585. [Google Scholar] [CrossRef]
- Karanikolaou, K.; Angelopoulou, K.; Papanastasopoulou, M.; Koumpati-Artopiou, M.; Papadopoulos, O.; Koptopoulos, G. Detection of small ruminant lentiviruses by PCR and serology tests in field samples of animals from Greece. Small Rumin. Res. 2005, 58, 181–187. [Google Scholar] [CrossRef]
- Brinkhof, J.; Maanen, K. Detection and Control of Lentiviral Infections in Sheep and Goats; Jan Brinkhof: Utrecht, The Netherlands, 2010; Volume 2010, ISBN 978-90-393-51796. [Google Scholar]
- Herrmann-Hoesing, L.M.; Palmer, G.H.; Knowles, D.P. Evidence of proviral clearance following postpartum transmission of an ovine lentivirus. Virology 2007, 362, 226–234. [Google Scholar] [CrossRef]
- Pai, N.P.; Karellis, A.; Kim, J.; Peter, T. Modern diagnostic technologies for HIV. Lancet HIV 2020, 7, e574–e581. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).