Determining a Safe Distance Zone for Firefighters Using a High-Resolution Global Canopy Height Dataset—A Case in Türkiye
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Safety Zone Models
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Campbell, M.J.; Dennison, P.E.; Thompson, M.P.; Butler, B.W. Assessing potential safety zone suitability using a new online mapping tool. Fire 2022, 5, 5. [Google Scholar] [CrossRef]
- Page, W.G.; Butler, B.W. An empirically based approach to defining wildland firefighter safety and survival zone separation distances. Int. J. Wildland Fire 2017, 26, 655–667. [Google Scholar] [CrossRef]
- Dennison, P.E.; Fryer, G.K.; Cova, T.J. Identification of firefighter safety zones using lidar. Environ. Model. Softw. 2014, 59, 91–97. [Google Scholar] [CrossRef]
- Alexander, M.E.; Taylor, S.W.; Page, W.G. Wildland firefighter safety and fire behavior prediction on the fireline. In Proceedings of the 13th International Wildland Fire Safety Summit & 4th Human Dimensions Wildland Fire Conference, Boise, ID, USA, 20–24 April 2015. [Google Scholar]
- Haynes, K.; Short, K.; Xanthopoulos, G.; Viegas, D.X.; Ribeiro, L.M.; Blanchi, R. Wildfires and WUI fire fatalities. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer: Cham, Switzerland, 2020; p. 16. [Google Scholar]
- Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.X.; Silva, C.A.; Cardil, A. Analysis of forest fire fatalities in southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 2019, 28, 85–98. [Google Scholar] [CrossRef]
- Blanchi, R.; Leonard, J.; Haynes, K.; Opie, K.; James, M.; de Oliveira, F.D. Environmental circumstances surrounding bushfire fatalities in Australia 1901–2011. Environ. Sci. Policy 2014, 37, 192–203. [Google Scholar] [CrossRef]
- Diakakis, M.; Xanthopoulos, G.; Gregos, L. Analysis of forest fire fatalities in Greece: 1977–2013. Int. J. Wildland Fire 2016, 25, 797–809. [Google Scholar] [CrossRef]
- Cardil, A.; Molina, D.M. Factors causing victims of wildland fires in Spain (1980–2010). Hum. Ecol. Risk Assess. 2015, 21, 67–80. [Google Scholar] [CrossRef]
- Alexander, M.E.; Buxton-Carr, P. Wildland fire suppression related fatalities in Canada, 1941–2010: A preliminary report. In Proceedings of the 11th International Wildland Fire Safety Summit, Missoula, MT, USA, 4–8 April 2011. [Google Scholar]
- Butler, B.W. Wildland firefighter safety zones: A review of past science and summary of future needs. Int. J. Wildland Fire 2014, 23, 295–308. [Google Scholar] [CrossRef]
- Butler, B.W.; Cohen, J.D. Firefighter safety zones: A theoretical model based on radiative heating. Int. J. Wildland Fire 1998, 8, 73–77. [Google Scholar] [CrossRef]
- Butler, B.; Parsons, R.; Mell, W. Recent findings relating to firefighter safety zones. In Proceedings of the Large Wildland Fires Conference, Missoula, MT, USA, 19–23 May 2014. [Google Scholar]
- Gleason, P. Lookouts, Communications, Escape Routes, and Safety Zones. Available online: https://www.coloradofirecamp.com/fire-origins/LCES-gleason.htm (accessed on 20 August 2024).
- Thorburn, R.W.; Alexander, M.E. LACES versus LCES: Adopting an “A” for “Anchor Points” to improve wildland firefighter safety. In Proceedings of the 2001 International Wildland Fire Safety Summit, Missoula, MT, USA, 6–8 November 2001. [Google Scholar]
- National Wildfire Coordinating Group. Incident Response Pocket Guide. 2014. Available online: https://www.dnr.wa.gov/publications/rp_cb_incident_response_pocket_guide.pdf (accessed on 3 January 2022).
- Alexander, M.E.; Mutch, R.W.; Davis, K.M.; Bucks, C.M. Wildland fires: Dangers and survival. In Auerbach’s Wilderness Medicine, 7th ed.; Elsevier: Philadelphia, PA, USA, 2017; pp. 276–318. Available online: https://www.researchgate.net/publication/292328217_Wildland_fires_dangers_and_survival (accessed on 25 August 2024).
- Campbell, M.J.; Dennison, P.E.; Butler, B.W. Safe separation distance score: A new metric for evaluating wildland firefighter safety zones using lidar. Int. J. Geogr. Inf. Sci. 2017, 31, 1448–1466. [Google Scholar] [CrossRef]
- Zarate, L.; Arnaldos, J.; Casal, J. Establishing safety distances for wildland fires. Fire Saf. J. 2008, 43, 565–575. [Google Scholar] [CrossRef]
- Rossi, J.L.; Simeoni, A.; Moretti, B.; Leroy-Cancellieri, V. An analytical model based on radiative heating for the determination of safety distances for wildland fires. Fire Saf. J. 2011, 46, 520–527. [Google Scholar] [CrossRef]
- Frankman, D.; Webb, B.W.; Butler, B.W.; Jimenez, D.; Forthofer, J.M.; Sopko, P.; Shannon, K.S.; Hiers, J.K.; Ottmar, R.D. Measurements of convective and radiative heating in wildland fires. Int. J. Wildland Fire 2012, 22, 157–167. [Google Scholar] [CrossRef]
- Andrews, P.L.; Bevins, C.D.; Seli, R.C. BehavePlus Fire Modeling System, Version 4.0; User’s Guide. Gen. Tech. Rep. RMRS-GTR-106, Revised; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2009; Volume 106, p. 132. [Google Scholar]
- Steele, J. Effective Firefighter Safety Zone Size: A Perception of Firefighter Safety. In Proceedings of the 4th International Wildland Fire Safety Summit, Edmonton, AB, Canada, 10–12 October 2000; Butler, B.W., Shannon, K.S., Eds.; International Association of Wildland Fire: Missoula, MT, USA, 2000; pp. 171–177. [Google Scholar]
- Bechtold, W.A.; Zarnoch, S.J.; Burkman, W.G. Comparisons of modeled height predictions to ocular height estimates. South. J. Appl. For. 1998, 22, 216–221. [Google Scholar] [CrossRef]
- Türkan, S.; Özel, G.; Güney, C.O.; Ünal, C.; Şentürk, Ö.; Özkan, K. A New Approach to Determine the Influence of Weather Conditions on Forest Fire Risk in the Mediterranean Region of Türkiye. Mugla J. Sci. Technol. 2023, 9, 1–10. [Google Scholar] [CrossRef]
- Demir, E. The Assesment of the Population and Social Characteristics of Antalya. Turk. Acad. Res. Rev. 2022, 7, 75–96. [Google Scholar]
- Güney, C.O.; Ryan, K.C.; Güney, A.; Hood, S.M. Wildfire in Turkey-Fire management challenges at an ancient crossroads of nature & culture. Wildfire 2019, 28, 20–26. [Google Scholar]
- General Directorate of Forestry (GDF). Forestry Statistics 2022. Publications of General Directorate of Forestry. 2022. Available online: https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler (accessed on 10 September 2024).
- Gazzard, R. Risk Management Control Measure: Toolkit for Practitioners and Advisors; UK Vegetation Fire Risk Management: London, UK, 2012; p. 24. Available online: http://news.bbc.co.uk/2/shared/bsp/hi/pdfs/10_10_12_fire_control_measures.pdf (accessed on 31 March 2025).
- Tolan, J.; Yang, H.I.; Nosarzewski, B.; Couairon, G.; Vo, H.V.; Brandt, J.; Spore, J.; Majumdar, S.; Haziza, D.; Vamaraju, J.; et al. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sens. Environ. 2014, 300, 113888. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Alexander, M.E.; Baxter, G.J.; Dakin, G.R. How much time does it take for a wildland firefighter to reach a safety zone. Wildfire Mag. 2013, 12–13. [Google Scholar]
Vh(min) | Vh(mean) | Vh(max) | |
---|---|---|---|
Average Vh within 2 m buffered areas (m) | 1.65 | 5.07 | 9.86 |
Range of Vh within 2 m buffered areas (m) | 1–24 | 1–25 | 1–33 |
Median Vh within 2 m buffered areas (m) | 1.00 | 4.77 | 9.00 |
SSD (m) | 13.12 | 40.56 | 78.88 |
Number of Clearing | Total Area (ha) | |
---|---|---|
SZ(SSD min) | 26,675 | 16,225.62 |
SZ(SSD mean) | 4660 | 6267.37 |
SZ(SSD max) | 541 | 1584.89 |
Number of SZs | Areamin (ha) | Areamean (ha) | Areamax (ha) | Total Area (ha) | |
---|---|---|---|---|---|
SZ(SSD min) | 21,987 | 0.0156 | 0.1668 | 65.156 | 3666.62 |
SZ(SSD mean) | 6144 | 0.0156 | 0.2303 | 42.2035 | 1415.19 |
SZ(SSD max) | 1339 | 0.0157 | 0.2678 | 28.9976 | 358.45 |
Number of SZs in Slope 1 * Class | Area in Slope 1 Class (ha) | Number of SZs in Slope 2 ** Class | Area in Slope 2 Class (ha) | |
---|---|---|---|---|
SZ(SSD min) | 7120 | 1505.38 | 14,858 | 2161.23 |
SZ(SSD mean) | 1966 | 621.67 | 4.178 | 793.33 |
SZ(SSD max) | 420 | 154.11 | 919 | 204.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uçar, Z. Determining a Safe Distance Zone for Firefighters Using a High-Resolution Global Canopy Height Dataset—A Case in Türkiye. Forests 2025, 16, 709. https://doi.org/10.3390/f16040709
Uçar Z. Determining a Safe Distance Zone for Firefighters Using a High-Resolution Global Canopy Height Dataset—A Case in Türkiye. Forests. 2025; 16(4):709. https://doi.org/10.3390/f16040709
Chicago/Turabian StyleUçar, Zennure. 2025. "Determining a Safe Distance Zone for Firefighters Using a High-Resolution Global Canopy Height Dataset—A Case in Türkiye" Forests 16, no. 4: 709. https://doi.org/10.3390/f16040709
APA StyleUçar, Z. (2025). Determining a Safe Distance Zone for Firefighters Using a High-Resolution Global Canopy Height Dataset—A Case in Türkiye. Forests, 16(4), 709. https://doi.org/10.3390/f16040709