The Importance of Stand Structure in Narrow-Leaved Ash (Fraxinus angustifolia Vahl) Dieback—Insights from an Extensively Managed Stand on a Humogley Soil in Serbia †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurements and Data Analysis
- Degree of isolation of crown 1 (IC1) was assigned to trees with a free crown, without contact with the crowns of neighbouring trees or contact up to 25% of the sunlit crown projection area. IC2 was assigned to trees with reduced crowns due to contact with neighbouring trees on one side with a contact of 25%–50% of the sunlit crown projection area. IC3 was assigned to trees with a reduced crown from two or more sides due to contact of >50% with the neighbouring trees’ sunlit crown projection area.
2.3. Statistical Analysis
3. Results
3.1. Basic Stand Structure in 2020
3.2. Growth Characteristics and Structure of Narrow-Leaved Ash Shown per Crown Class (CC)
3.3. Growth Characteristics and Structure of All Trees and Predominant/Dominant (CC1) Narrow-Leaved Ash Trees Shown per Degree of the Crown Isolation (IC)
3.4. Growth Characteristics and Diameter Structure of All Trees and CC1 Trees Divided by the Degree of Defoliation (DG)
3.5. The Relations of Stand Structure and Defoliation in All Trees and Predominant/Dominant (CC1) Narrow-Leaved Ash Trees
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schulz, B. Introduction Part 1: New Insights into Disease Development and Control of Ash Dieback. Balt. For. 2017, 23, 1–3. [Google Scholar]
- Kirisits, T.; Matlakova, M.; Mottinger-Kroupa, S.; Halmschlager, E.; Lakatos, F. Chalara fraxinea associated with dieback of narrow-leaved ash (Fraxinus angustifolia). Plant Pathol. 2010, 59, 411. [Google Scholar] [CrossRef]
- Kirisits, T.; Schwanda, K. First definite report of natural infection of Fraxinus ornus by Hymenoscyphus fraxineus. For. Pathol. 2015, 45, 430–432. [Google Scholar] [CrossRef]
- Kirisits, T. Further Observations on the Association of Hymenoscyphus fraxineus with Fraxinus ornus. Balt. For. 2017, 23, 60–67. [Google Scholar]
- Diminić, D.; Kranjec-Ostojić, J.; Milotić, M. Uzročnici bolesti poljskog jasena. In Ekologija, Obnova i Zaštita Poplavnih Šuma Posavine; Oršanić, B., Ed.; University of Zagreb, Faculty of Forestry and Wood Technology: Zagreb, Croatia, 2020; pp. 189–236. [Google Scholar]
- Keča, N. First Report of the Invasive Ash Dieback Pathogen Hymenoscyphus fraxineus on Fraxinus excelsior and F. angustifolia in Serbia. Balt. For. 2017, 23, 56–59. [Google Scholar]
- Marković, M.; Pap, P.; Pekeč, S.; Galović, V.; Pilipović, A.; Čortan, R.; Rađević, V. Monitoring of the fungus Chalara fraxinea in Vojvodina during 2016. Topola. 2016, 197/198, 111–122. [Google Scholar]
- Barić, L.; Županić, M.; Pernek, M.; Diminić, D. First records of Chalara fraxinea in Croatia—A new agent of ash dieback (Fraxinus spp.). Šumarski List 2012, 9–10, 461–468. Available online: https://hrcak.srce.hr/91428 (accessed on 26 December 2024).
- Stanivuković, Z.; Karadžić, D.; Milenković, I. The first record of the parasitic fungus Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz, Hosoya, on the common ash in Bosnia and Herzegovina. Šumarstvo 2014, 3–4, 19–33. [Google Scholar]
- Szabó, I. First report of Chalara fraxinea affecting common ash in Hungary. Plant Pathol. 2008, 58, 797. [Google Scholar] [CrossRef]
- Milenković, I.; Jung, T.; Stanivuković, Z.; Karadžić, D. First report of Hymenoscyphus fraxineus on Fraxinus excelsior in Montenegro. For. Pathol. 2017, 47, e12359. [Google Scholar] [CrossRef]
- Gross, A.; Holdenrieder, O.; Pautasso, M.; Queloz, V.; Sieber, T.N. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol. Plant. Pathol. 2014, 15, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Kranjec Orlović, J.; Moro, M.; Diminić, D. Role of Root and Stem Base Fungi in Fraxinus angustifolia (Vah) Dieback in Croatian Floodplain Forests. Forests 2020, 11, 607. [Google Scholar] [CrossRef]
- Alves, A.; Linaldeddu, B.T.; Deidda, A.; Scanu, B.; Phillips, A.J.L. The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Divers. 2014, 67, 143–156. [Google Scholar] [CrossRef]
- Elena, G.; León, M.; Abad-Campos, P.; Armengol, J.; Mateu-Andrés, I.; Güemes-Heras, J. First Report of Diplodia fraxini Causing Dieback of Fraxinus angustifolia in Spain. Plant Dis. 2018, 102, 2645. [Google Scholar] [CrossRef]
- Linaldeddu, B.T.; Bottecchia, F.; Bregant, C.; Maddau, L.; Montecchio, L. Diplodia fraxini and Diplodia subglobosa: The Main Species Associated with Cankers and Dieback of Fraxinus excelsior in North-Eastern Italy. Forests 2020, 11, 883. [Google Scholar] [CrossRef]
- Karadžić, D.; Stanivuković, Z.; Milanović, S.; Sikora, K.; Radulović, Z.; Račko, V.; Kardošová, M.; Ďurkovič, J.; Milenković, I. Development of Neonectria punicea Pathogenic Symptoms in Juvenile Fraxinus excelsior Trees. Front. Plant. Sci 2020, 11, 592260. [Google Scholar] [CrossRef]
- Benigno, A.; Bregant, C.; Aglietti, C.; Rossetto, G.; Tolio, B.; Moricca, S.; Linaldeddu, B.T. Pathogenic fungi and oomycetes causing dieback on Fraxinus species in the Mediterranean climate change hotspot region. Front. For. Glob. Chang. 2023, 6, 1253022. [Google Scholar] [CrossRef]
- Kranjec, J. The Role of Fungi and Fungus-like Organisms in Dieback of Narrow-Leaved Ash (Fraxinus angustifolia Vahl) in Posavina Lowland Forests of the Republic of Croatia. Doctoral Thesis, University of Zagreb, Faculty of Forestry, Zagreb, Croatia, 2017. [Google Scholar]
- Ugarković, D.; Pleša, K. Comparison between tree dieback of pedunculate oak and narrow-leaved ash in relation to ecological constitution of species. Šumar. List 2017, 141, 227–235. [Google Scholar] [CrossRef]
- Ugarković, D.; Oršanić, M. Odnos stanišnih i strukturnih čimbenika prema odumiranju stabala poljskog jasena (Fraxinus angustifolia Vahl) u Posavini. In Ekologija, Obnova i Zaštita Poplavnih Šuma Posavine; Oršanić, B., Ed.; University of Zagreb, Faculty of Forestry and Wood Technology: Zagreb, Croatia, 2020; pp. 43–100. [Google Scholar]
- Seletković, I.; Potočić, N.; Ugarković, D.; Ognjenović, M. Vitalitet i odumiranje poljskog jasena u Hrvatskoj. In Poljski Jasen u Hrvatskoj; Anić, I., Ed.; Akademija Šumarskih Znanosti: Zagreb, Croatia, 2022; pp. 315–336. [Google Scholar]
- Bobinac, M.; Andrašev, S. Pioneer narrow-leaved ash (Fraxinus angustifolia Vahl) stand structure before and after the current decline—A case study based on the permanent sample plots in Posavina and Podunavlje (Serbia). In Proceedings of the Symposium on Forest Protection—Stability of Forest Ecosystems, Sarajevo, Bosnia and Herzegovina, 21 March 2024; Beus, V., Ed.; Special Editions. Academy of Sciences and Arts of Bosnia and Herzegovina: Sarajevo, Bosnia and Herzegovina, 2024; Volume 29, pp. 110–132, (preliminary communication). Available online: https://bastina.anubih.ba/server/api/core/bitstreams/4344e123-dfee-4752-988d-af23aa51d3e9/content (accessed on 26 December 2024).
- Havrdová, L.; Zahradník, D.; Romportl, D.; Pešková, V.; Černý, K. Environmental and Silvicultural Characteristics Influencing the Extent of Ash Dieback in Forest Stands. Balt. For. 2017, 23, 168–182. [Google Scholar]
- Timmerman, V.; Nagy, N.E.; Hietala, A.M.; Børja, I.; Solheim, H. Progression of Ash Dieback in Norway Related to Tree Age, Disease History and Regional Aspects. Balt. For. 2017, 23, 150–158. [Google Scholar]
- Lenz, H.D.; Bartha, B.; Straßer, L.; Lemme, H. Development of Ash Dieback in South-Eastern Germany and the Increasing Occurrence of Secondary Pathogens. Forests 2016, 7, 41. [Google Scholar] [CrossRef]
- Marçais, B.; Husson, C.; Caël, O.; Dowkiw, A.; Saintonge, F.X.; Delahaye, L.; Collet, C.; Chandelier, A. Estimation of Ash Mortality Induced by Hymenoscyphus fraxineus in France and Belgium. Balt. For. 2017, 23, 159–167. [Google Scholar]
- Skovsgaard, J.P.; Thomsen, I.M.; Skovgaard, M.; Martinussen, T. Associations among symptoms of dieback in even-aged stands of ash (Fraxinus excelsior L.). For. Path. 2010, 40, 7–18. [Google Scholar] [CrossRef]
- Chandelier, A.; Gerarts, F.; San Martin, G.; Herman, M.; Delahaye, L. Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 2016, 46, 289–297. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; Update Edition; Yale School of the Environment Other Publications: New York, NY, USA, 1996; Available online: https://elischolar.library.yale.edu/fes_pubs/1 (accessed on 26 December 2024).
- Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Metzler, B.; Enderle, R.; Karopka, M.; Töpfner, K.; Aldinger, E. Development of Ash dieback in a provenance trial on different sites in southern Germany. Allg Forst-Jagdztg 2012, 183, 168–180. [Google Scholar]
- Enderle, R.; Peters, F.; Nakou, A.; Metzler, B. Temporal development of ash dieback symptoms and spatial distribution of collar rots in a provenance trial of Fraxinus excelsior. Eur. J. For. Res. 2013, 132, 865–876. [Google Scholar] [CrossRef]
- Bobinac, M.; Vučković, M. Effect of some exogenous factors on the variability of diameter increment of narrow-leaved ash (Fraxinus angustifolia Vahl) future trees on an ecologically optimal site. Ekológia Bratisl. 1999, 18, 31–38. [Google Scholar]
- Bobinac, M.; Andrašev, S.; Vučković, M.; Stajić, B. Phytosociological revitalization of hardwood broadleaved stands in SRN “Gornje Podunavlje”. In Proceedings of the XVII International Eco-Conference “Environmental protection of urban and suburban settlements”, Novi Sad, Serbia, 25–28 September 2013; Available online: http://data.sfb.bg.ac.rs/sftp/branko.stajic/Phytosociological%20revitalization%20of%20hardwood_2013.pdf (accessed on 26 December 2024).
- Turczański, K.; Bełka, M.; Kukawka, R.; Spychalski, M.; Smiglak, M. A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies. Forests 2021, 12, 1072. [Google Scholar] [CrossRef]
- Rozsypálek, J.; Martinek, P.; Palovčíková, D.; Jankovský, L. The protection of ash trees against ash dieback by tree injections. Urban For. Urban Green. 2023, 88, 128071. [Google Scholar] [CrossRef]
- Vemić, A.; Popović, V.; Lučić, A.; Kudláček, T.; Radulović, Z.; Ćosić, M.; Rakonjac, L. The efficiency of Thymus vulgaris, Lavandula angustifolia, and Cupressus sempervirens essential oils in suppression of Hymenoscyphus fraxineus on Fraxinus angustifolia seedlings. For. Pathol. 2024, 54, e12853. [Google Scholar] [CrossRef]
- Skovsgaard, J.P.; Wilhelm, G.J.; Thomsen, I.M.; Metzler, B.; Kirisits, T.; Havrdová, L.; Enderle, R.; Dobrowolska, D.; Cleary, M.; Clark, J. Silvicultural strategies for Fraxinus excelsior in response to dieback caused by Hymenoscyphus fraxineus. For. Int. J. For. Res. 2017, 90, 455–472. [Google Scholar] [CrossRef]
- Hauptman, T.; Ogris, N.; de Groot, M.; Piškur, B.; Jurc, D. Individual resistance of Fraxinus angustifolia clones to ash dieback. For. Pathol. 2016, 46, 269–280. [Google Scholar] [CrossRef]
- Combes, M.; Webber, J.; Boddy, L. Current understanding and future prospects for ash dieback disease with a focus on Britain. For. Int. J. For. Res. 2024, 97, 678–691. [Google Scholar] [CrossRef]
- Enderle, R.; Nakou, A.; Thomas, K.; Metzler, B. Susceptibility of autochthonous German Fraxinus excelsior clones to Hymenoscyphus pseudoalbidus is genetically determined. Ann. For. Sci. 2014, 72, 183–193. [Google Scholar] [CrossRef]
- Chandelier, A.; Delahaye, L.; Claessens, H.; Lassois, L. Ash dieback in Wallonia, southern Belgium: Research on disease development, resistance & management options. In Dieback of European Ash (Fraxinus spp.)—Consequences and Guidelines for Sustainable Management; Vasaitis, R., Enderle, R., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2017; pp. 53–60. [Google Scholar]
- Sioen, G.; Roskams, P.; De Cuyper, B.; Steenackers, M. Ash dieback in Flanders (Belgium): Research on disease development, resistance and management options. In Dieback of European Ash (Fraxinus spp.)—Consequences and Guidelines for Sustainable Management; Vasaitis, R., Enderle, R., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2017; pp. 61–67. [Google Scholar]
- Mitchell, R.J.; Broome, A.; Beaton, J.K.; Bellamy, P.E.; Ellis, C.J.; Hester, A.J.; Hodgetts, N.G.; Iason, G.R.; Littlewood, N.A.; Newey, S.; et al. Challenges in Assessing the Ecological Impacts of Tree Diseases and Mitigation Measures: The Case of Hymenoscyphus fraxineus and Fraxinus excelsior. Balt. For. 2017, 23, 116–140. [Google Scholar]
- Broome, A.; Ray, D.; Mitchell, R.; Harmer, R. Responding to ash dieback (Hymenoscyphus fraxineus) in the UK: Woodland composition and replacement tree species. For. Int. J. For. Res. 2018, 92, 108–119. [Google Scholar] [CrossRef]
- Lévesque, M.; Bustamante Eduardo, J.I.; Queloz, V. Potential alternative tree species to Fraxinus excelsior in European forests. Front. For. Glob. Chang. 2023, 6, 1048971. [Google Scholar] [CrossRef]
- Dekanić, S. Morphological and Dendrochronological Analysis of Damaged Pedunculate Oak Trees (Quercus robur L.) in Old Stands of the Spačva Forest. Doctoral Thesis, University of Zagreb, Faculty of Forestry, Zagreb, Croatia, 2014. [Google Scholar]
- Jović, D.; Jović, N.; Jovanović, B.; Tomić, Z.; Banković, S.; Medarević, M.; Knežević, M.; Grbić, P.; Živanov, N.; Ivanišević, P. Forest Types in the Flatland Srem—Atlas; Geokarta: Belgrade, Serbia, 1994; pp. 1–28. [Google Scholar]
- Geosrbija. Available online: https://a3.geosrbija.rs/ (accessed on 26 December 2024).
- Tomić, Z.; Knežević, M.; Cvjetićanin, R. Higrophilous forests of narrow-leaved ash in lowland Srem. In Proceedings of the Zasavica 2001, Sremska Mitrovica, Serbia, 27–30 June 2001. [Google Scholar]
- Knežević, M.; Košanin, O. Soil in hygrophilous forests of narrow-leaved ash in Ravni Srem. In Proceedings of the First Serbian Forestry Congress-Future with Forests, Belgrade, Serbia, 11–13 November 2010. [Google Scholar]
- Bobinac, M.; Grbić, P.; Janjatović, G.; Abjanović, Z. Thinning in young stands of pedunculate oak and narrow-leaved ash in the region of “Sremska Mitrovica”. Šumarstvo 1997, 4–5, 33–43. [Google Scholar]
- Schädelin, W. Die Auslesedurchforstung als Erziehungsbetrieb Höchster Wertleistung, 3rd ed.; Verlag Paul Haupt: Bern-Leipzig, Germany, 1942. [Google Scholar]
- Assmann, E. The Principles of Forest Yield Study, Studies in the Organic Production, Structure, Increment and Yield of Forest Stands; Pergamon Press Ltd.: Oxford, UK, 1970. [Google Scholar]
- Kraft, G. Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben; Klindworth’s Verlag: Hannover, Germany, 1884. [Google Scholar]
- Eichhorn, J.; Roskams, P.; Potočić, N.; Timmermann, V.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D.; Seletković, I.; Schröck, H.W.; et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. In UNECE ICP Forests Programme Coordinating Centre (ed.): Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of Air Pollution on Forests; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016; Available online: https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2017_02_part04.pdf (accessed on 26 December 2024).
- Michailoff, I. Zahlenmäßiges Verfahren für die Ausführung der Bestandeshöhenkurven. Fw. Cbl. U. Thar. Forstl. Jahrb. 1943, 6, 273–279. [Google Scholar]
- Pantić, D. Volume tables for narrow-leaved ash (Fraxinus angustifolia Vahl) in the forests of Ravni Srem. Šumarstvo 1996, 1–2, 58–62. [Google Scholar]
- Field, A.P.; Miles, J.; Field, Z. Discovering Statistics Using R; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2012. [Google Scholar]
- Rosenblatt, M. Remarks on some non-parametric estimates of a density function. Ann. Math. Statist. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Silverman, B.W. Choosing the window width when estimating a density. Biometrika 1978, 65, 1–11. [Google Scholar] [CrossRef]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Chapman & Hall/CRC: London, UK, 1994; ISBN 978-0-412-55270-0. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. Available online: http://www.R-project.org (accessed on 26 December 2024).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- de Mendiburu, F. Package ‘agricolae’, ver. 1.3-5. Statistical Procedures for Agricultural Research. 2021. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 26 December 2024).
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar Of Graphics. Version, 2(1). 2016. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=af53fd2f5b9e81b6edec0c13e1b3babd34bda399 (accessed on 26 December 2024).
- Auguie, B.; Antonov, A. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. 2017. Available online: https://CRAN.R-project.org/package=gridExtra (accessed on 26 December 2024).
- Mikac, S. Utjecaj klimatskih čimbenika na rast poljskog jasena. In Ekologija, Obnova i Zaštita Poplavnih Šuma Posavine; Oršanić, B., Ed.; University of Zagreb, Faculty of Forestry and Wood Technology: Zagreb, Croatia, 2020; pp. 11–41. [Google Scholar]
- Bobinac, M.; Andrašev, S.; Đanić, I. Example of recent succession of vegetation in the area of Monoštorski rit due to changes in hydrological conditions. In Proceedings of the Erosion and Torrent Control as a Factor in Sustainable River Basin Management, Belgrade, Serbia, 25–28 September 2007. [Google Scholar]
- Stojanovic, D.B.; Levanič, T.; Matović, B.; Orlović, S. Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. Eur. J. For. Res. 2015, 134, 555–567. [Google Scholar] [CrossRef]
- Nikolić, V. Watering Regime Influence on Characteristics of Pedunculate Oak (Quercus robur L.) Habitats in Ravni Srem. Doctoral Thesis, University of Belgrade, Faculty of Forestry, Belgrade, Serbia, 2016. [Google Scholar]
- Škvorc, Ž.; Cestarić, D.; Franjić, J.; Krstonošić, D.; Sever, K.; Guzmić, M. Forest vegetation dynamic in the Spačva basin in the last forty years. In Proceedings of the Forests of Pedunculate Oak in Changed Site and Management Conditions, Zagreb, Croatia, 24–25 September 2009. [Google Scholar]
- Tiley, A.M.M.; O’Hanlon, R. Living with the Impact of Ash Dieback Disease—Local Mitigation Practices Against Hymenoscyphus fraxineus on the Island of Ireland. Biol. Environ. Proc. R. Ir. Acad. 2022, 122, 67–84. [Google Scholar] [CrossRef]
- Stener, L.-G. Genetic evaluation of damage caused by ash dieback with emphasis on selection stability over time. For. Ecol. Manag. 2018, 409, 584–592. [Google Scholar] [CrossRef]
- Enderle, R.; Stenlid, J.; Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Moreau, G.; Chagnon, C.; Achim, A.; Caspersen, J.; D’Orangeville, L.; Sánchez-Pinillos, M.; Thiffault, N. Opportunities and limitations of thinning to increase resistance and resilience of trees and forests to global change. For. Int. J. For. Res. 2022, 95, 595–615. [Google Scholar] [CrossRef]
- Short, I.; Hawe, J. Ash dieback in Ireland—A review of European management options and case studies in remedial silviculture. Ir. For. 2018, 75, 44–72. [Google Scholar]
- Cracknell, D.J.; Peterken, G.F.; Pommerening, A.; Lawrence, P.J.; Healey, J.R. Neighbours matter and the weak succumb: Ash dieback infection is more sever in ash trees with fewer conspecific neighbours and lower prior growth rate. J. Ecol. 2023, 111, 2118–2133. [Google Scholar] [CrossRef]
- Bakys, R.; Vasaitis, R.; Skovsgaard, J.P. Patterns and Severity of Crown Dieback in Young Even-Aged Stands of European Ash (Fraxinus excelsior L.) in Relation to Stand Density, Bud Flushing Phenotype, and Season. Plant. Protect. Sci. 2013, 49, 120–126. [Google Scholar] [CrossRef]
- Heinze, B.; Tiefenbacher, H.; Litschauer, R.; Kirisits, T. Ash dieback in Austria—History, current situation and outlook. In Dieback of European Ash (Fraxinus spp.)—Consequences and Guidelines for Sustainable Management; Vasaitis, R., Enderle, R., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2017; pp. 33–52. [Google Scholar]
- Bobinac, M. Effect of late thinning on the increment of future trees of narrow-leaved ash (Fraxinus angustifolia Vahl). Glas. Šumarskog Fak. 2000, 83, 43–54. [Google Scholar]
- Roberts, M.; Gilligan, C.A.; Kleczkowski, A.; Hanley, N.; Whalley, A.E.; Healey, J.R. The Effect of Forest Management Options on Forest Resilience to Pathogens. Front. For. Glob. Chang. 2020, 3, 7. [Google Scholar] [CrossRef]
- Lobo, A.; Hansen, J.K.; McKinney, L.V.; Nielsen, L.R.; Kjær, E.D. Genetic variation in dieback resistance: Growth and survival of Fraxinus excelsior under the influence of Hymenoscyphus pseudoalbidus. Scand. J. For. Res. 2014, 29, 519–526. [Google Scholar] [CrossRef]
- Grosdidier, M.; Scordia, T.; Ioos, R.; Marçais, B. Landscape epidemiology of ash dieback. J. Ecol. 2020, 108, 1789–1799. [Google Scholar] [CrossRef]
- Pautasso, M.; Aas, G.; Queloz, V.; Holdenrieder, O. European ash (Fraxinus excelsior) dieback—A conservation biology challenge. Biol. Conserv. 2013, 158, 37–49. [Google Scholar] [CrossRef]
- Enderle, R.; Bußkamp, J.; Metzler, B. Growth Performance of Dense Natural Regeneration of Fraxinus excelsior under Attack of the Ash Dieback Agent Hymenoscyphus fraxineus. Balt. For. 2017, 23, 218–228. [Google Scholar]
- Semizer-Cuming, D.; Finkeldey, R.; Nielsen, L.R.; Kjær, E.D. Negative correlation between ash dieback susceptibility and reproductive success: Good news for European ash forests. Ann. For. Sci. 2019, 76, 16. [Google Scholar] [CrossRef]
- Gašparović, M.; Pilaš, I.; Klobučar, D.; Gašparović, I. Monitoring Ash Dieback in Europe—An Unrevealed Perspective for Remote Sensing? Forests 2023, 15, 1178. [Google Scholar] [CrossRef]
- Manion, P.D. Tree Disease Concepts; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Manion, P.D. Evolution of concepts in forest pathology. Phytopathology 2003, 93, 1052–1055. [Google Scholar] [CrossRef]
Field Codes | 0 | 1 | 2a | 2b | 3a | 3b | 4 |
---|---|---|---|---|---|---|---|
% leaf loss | 0–10 | 11–25 | 26–40 | 41–60 | 61–80 | 81–99 | 100 |
Defoliation groups | DG1—healthy trees | DG2—significantly defoliated trees | DG3—dying and dead trees |
N (ha−1) | G (m2∙ha−1) | V (m3∙ha−1) | dg (cm) | hL (m) | hL/dg | |
---|---|---|---|---|---|---|
Total | 2115 | 32.37 | 292.1 | 14.0 | 16.9 | 1.08 |
Fraxinus angustifolia | 2000 | 30.93 | 280.0 | 14.0 | 17.0 | 1.08 |
Ulmus carpinifolia | 58 | 0.44 | 2.9 | 9.8 | ||
Quercus robur | 38 | 0.75 | 7.1 | 15.8 | ||
Pyrus communis | 19 | 0.25 | 2.1 | 13.0 |
Collective | Basic Growth Characteristics at Stand Level | Descriptive Statistics of DBH | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N (ha−1) | G (m2∙ha−1) | V (m3∙ha−1) | dg (cm) | hL (m) | n | (cm) | Min (cm) | Max (cm) | Sd (cm) | CV (%) | Skew | Kurt | |
Fraxinus angustifolia | 2000 | 30.93 | 280 | 14.0 | 17.0 | 208 | 13.1 | 5.8 | 26.8 | 5.06 | 38.6 | 0.54 | −0.55 |
CC1 | 692 | 19.82 | 200 | 19.1 | 19.3 | 72 | 18.8 | 12.8 | 26.8 | 3.15 | 16.8 | 0.32 | −0.35 |
CC2 | 154 | 2.39 | 20.5 | 14.1 | 15.8 | 16 | 14.0 | 12.3 | 17.2 | 1.53 | 11.0 | 0.93 | −0.07 |
CC3 | 1154 | 8.72 | 59.5 | 9.8 | 12.0 | 120 | 9.5 | 5.8 | 15.2 | 2.32 | 24.3 | −0.03 | −1.03 |
Collective | Basic Growth Characteristics at Stand Level | Descriptive Statistics of DBH | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N (ha−1) | G (m2∙ha−1) | V (m3∙ha−1) | dg (cm) | hL (m) | n | (cm) | Min (cm) | Max (cm) | Sd (cm) | CV (%) | Skew | Kurt | |
1 IC1 | 87 | 3.43 | 37.2 | 22.5 | 21.2 | 9 | 22.4 | 19.5 | 26.8 | 2.27 | 10.2 | 0.91 | 0.39 |
1 IC2 | 240 | 7.95 | 80.8 | 20.5 | 19.6 | 25 | 20.4 | 15.7 | 26.2 | 2.47 | 12.1 | 0.27 | −0.20 |
IC3 (all trees) | 1673 | 19.54 | 162.0 | 12.2 | 15.2 | 174 | 11.6 | 5.8 | 24.2 | 3.87 | 33.5 | 0.55 | −0.10 |
IC3 (CC1 trees) | 365 | 8.43 | 81.9 | 17.1 | 18.4 | 38 | 17.0 | 12.8 | 24.2 | 3.87 | 14.2 | 0.77 | 1.30 |
Collective | Basic Growth Characteristics at Stand Level | Descriptive Statistics of DBH | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N (ha−1) | G (m2∙ha−1) | V (m3∙ha−1) | dg (cm) | hL (m) | n | (cm) | Min (cm) | Max (cm) | Sd (cm) | CV (%) | Skew | Kurt | |
DG1 | 298 | 10.04 | 104.5 | 20.7 | 20.1 | 31 | 20.6 | 17.2 | 26.8 | 2.33 | 11.3 | 0.58 | 0.08 |
DG2 | 1038 | 15.97 | 141.2 | 14.0 | 16.5 | 108 | 13.4 | 5.8 | 26.2 | 4.06 | 30.3 | 0.69 | 0.58 |
DG3 | 663 | 4.92 | 34.3 | 9.7 | 12.3 | 69 | 9.3 | 5.8 | 17.8 | 2.97 | 32.1 | 1.01 | 0.58 |
Collective | Basic Growth Characteristics at Stand Level | Descriptive Statistics of DBH | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N (ha−1) | G (m2∙ha−1) | V (m3∙ha−1) | dg (cm) | hL (m) | n | Min (cm) | Max (cm) | Sd (cm) | CV (%) | Skew | Kurt | ||
DG1 | 288 | 9.82 | 102.3 | 20.8 | 20.1 | 30 | 20.7 | 17.2 | 26.8 | 2.28 | 11.0 | 0.61 | 0.16 |
DG2 | 356 | 9.01 | 88.5 | 18.0 | 18.7 | 37 | 17.7 | 12.8 | 26.2 | 3.15 | 17.8 | 0.88 | 0.53 |
DG3 | 48 | 0.99 | 9.2 | 16.2 | 17.3 | 5 | 16.2 | 14.0 | 17.8 | 1.54 | 9.5 | −0.50 | −1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabiljo, M.; Bobinac, M.; Andrašev, S.; Milenković, I.; Šušić, N. The Importance of Stand Structure in Narrow-Leaved Ash (Fraxinus angustifolia Vahl) Dieback—Insights from an Extensively Managed Stand on a Humogley Soil in Serbia. Forests 2025, 16, 36. https://doi.org/10.3390/f16010036
Kabiljo M, Bobinac M, Andrašev S, Milenković I, Šušić N. The Importance of Stand Structure in Narrow-Leaved Ash (Fraxinus angustifolia Vahl) Dieback—Insights from an Extensively Managed Stand on a Humogley Soil in Serbia. Forests. 2025; 16(1):36. https://doi.org/10.3390/f16010036
Chicago/Turabian StyleKabiljo, Milan, Martin Bobinac, Siniša Andrašev, Ivan Milenković, and Nikola Šušić. 2025. "The Importance of Stand Structure in Narrow-Leaved Ash (Fraxinus angustifolia Vahl) Dieback—Insights from an Extensively Managed Stand on a Humogley Soil in Serbia" Forests 16, no. 1: 36. https://doi.org/10.3390/f16010036
APA StyleKabiljo, M., Bobinac, M., Andrašev, S., Milenković, I., & Šušić, N. (2025). The Importance of Stand Structure in Narrow-Leaved Ash (Fraxinus angustifolia Vahl) Dieback—Insights from an Extensively Managed Stand on a Humogley Soil in Serbia. Forests, 16(1), 36. https://doi.org/10.3390/f16010036