Dynamic Change of Forest Ecological Benefit of the Natural Forest Protection Project in the Upper Reaches of Yangtze River
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Overview of the Study Area
2.2. Research Methodology
2.2.1. Data Sources
- (1)
- Ecological continuous clearing dataset: a continuous ecological inventory from the study area and the vicinity of the 22 forest ecology stations (Figure 1) taking long-term observation results, with data from 1998 used as background data before the NFPP began. At the same time, forest ecological continuous clearing is being carried out in the project area in accordance with the People’s Republic of China’s national standards “Methodology for field Long-Term observation of Forest Ecosystem” (GB/T 33027-2016) [44], “Indicator System for Long-Term Observation of Forest Ecosystem” (GB/T 35377-2017) [45], and “Specifications for assessment to forest ecosystem services” (GB/T 38582-2020) [39].
- (2)
- Forest resource dataset: forest resource data for 1998 and 2020 provided by the State Forestry and Grassland Administration’s Survey and Planning Design Institute.
- (3)
- Social public dataset: social public data published by authoritative institutions in China, such as the China Soil and Water Conservation Bulletin, the Water Resources Bulletin of the Yangtze River Basin and the Southwest Rivers, the China Forestry Yearbook, the Water Resources Construction Budget Quotas of the People’s Republic of China, the China Agricultural Information Network (http://www.agri.cn/) accessed on 1 January 2023, the China Statistical Yearbook National Health of the People’s Republic of China Health Commission (http://www.nhc.gov.cn/) accessed on 1 January 2023, etc.
2.2.2. Assessment Methods
2.3. Changes in Forest Resources in the Study Area
2.3.1. Characteristics of Quantitative Changes
2.3.2. Characteristics of Structural Change
Age-Group Structure of Arbor Forest
Dominant Tree Species (Group)
3. Results and Analysis
3.1. Changes in the Spatial and Temporal Physical Quality of Forest Ecosystem Service Functions
3.1.1. Soil Conservation
3.1.2. Water Conservation
3.1.3. Carbon Sequestration and Oxygen Release
3.1.4. Purification of Atmospheric Environment
3.2. Variations in the Value Quality of Forest Ecosystem Service Functions
3.3. Changes in Dominant Functions in Space and Time
4. Discussion
4.1. Spatial and Temporal Dynamics of Ecological Benefits in the Study Area
4.2. Forest Ecosystems’ Dominant Functions in the Study Area
4.3. Factors Impacting Forest Ecological Benefits in the Study Area
4.3.1. Natural Environmental Factors
4.3.2. Forest Resource Characteristics
5. Conclusions and Suggestion
5.1. Conclusions
- (1)
- On a temporal scale, the physical quantity and value of each service function of the forest ecosystem in the study area showed a significant increasing trend.
- (2)
- On the spatial scale, the changes in forest ecosystem service functions in the study area show significant spatial heterogeneity.
- (3)
- Forest ecosystems in the study area have the functions of biodiversity protection, water conservation, and soil conservation as their dominant functions.
- (4)
- The forest ecosystem service functions in the study area are closely related to the characteristics of forest resources (e.g., forest area, forest volume, and age structure of tree forests).
5.2. Suggestion
- (1)
- The NFPP has not only contributed to “double growth” in forest area and volume, it has improved forest ecosystem services and the ecological environment. As a result, it is vital to consolidate the results of the NFPP’s ecological benefits in the future process of natural forest resource protection and development.
- (2)
- The monitoring and assessment system for the ecological benefits of natural forests should be improved and the monitoring and assessment work should be strengthened.
- (3)
- In order to continue to strengthen the protection of natural forest resources, it is critical to focus on the tree species structure in terms of both increasing quantity optimizing the age group structure in order to improve the quality of natural forest resources.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kitaibekova, S.; Toktassynov, Z.; Sarsekova, D.; Mohammadi Limaei, S.; Zhilkibayeva, E. Assessment of Forest Ecosystem Services in Burabay National Park, Kazakhstan: A Case Study. Sustainability 2023, 15, 4123. [Google Scholar] [CrossRef]
- Wang, X.K.; Yang, N.; Wu, F.; Ren, Y.F.; Wang, S.Y.; Bo, G.M.; Jiang, G.M.; Wang, Y.K.; Sun, Y.J.; Zhang, L.; et al. Ecological benefit evaluation contents and indicator selection. Acta Ecol. Sin. 2019, 39, 5442–5449. [Google Scholar]
- Zhao, T.Q.; Ouyang, Z.Y.; Zheng, H.; Wang, X.K.; Miao, H. Forest ecosystem services and their valuation in China. J. Nat. Resour. 2004, 19, 480–491. [Google Scholar]
- Adger, N.; Brown, K.; Cervigni, R.; Moran, D. Total economic value of forests in Mexico. Ambio 1995, 24, 286–296. [Google Scholar]
- Mäler, K.G.; Aniyar, S.; Jansson, A. Accounting for ecosystem services as a way to understand the requirements for sustainable development. Proc. Natl. Acad. Sci. USA 2008, 105, 9501–9506. [Google Scholar] [CrossRef] [PubMed]
- Mi, F.; Li, J.Y.; Yang, J.W. Review on research of evaluation on forest ecological benefits. J. Beijing For. Univ. 2003, 25, 77–83. [Google Scholar]
- Wang, H.; Wang, B.; Niu, X.; Song, Q.F. Dynamic change of natural forest ecological benefit in Changbai Forest Industry Group since implementation of natural forest protection project. Sci. Soil Water Conserv. 2017, 15, 86–93. [Google Scholar]
- Lin, X.X.; Zhang, D.M. Construction of Legal System for Natural Forest Protection and Restoration under the Concept of Green Development. J. Fujian Norm. Univ. (Philos. Soc. Sci. Ed.) 2020, 5, 71–79. [Google Scholar]
- Liu, S.R.; Ma, J.M.; Miao, N. Achievements in natural forest protection, ecological restoration, and sustainable management in China. Acta Ecol. Sin. 2015, 35, 0212–0218. [Google Scholar]
- Liu, S.R.; Pang, Y.; Zhang, H.R.; Wang, B.; Ye, B.; Jiang, Z.P.; Xie, H.S.; Niu, X.D.; Wang, D.J.; Ding, Y.; et al. Evaluation indicator system and method designed for Natural Forest Protection Program of China. Acta Ecol. Sin. 2021, 41, 5067–5079. [Google Scholar]
- Lin, Q.Y.; Ding, X.T.; Duan, Z.A. Advances in Forest Benefit Assessments in the Last Ten Years in China. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2009, 40, 304–308. [Google Scholar]
- Li, S.J.; Yuan, Q.Z.; Dong, X.S.; Kou, Y.W.; Ren, P. Research Progress on Forest Ecological Resource Pattern and Change in the Upper Reaches of the Yangtze River. J. Heilongjiang Vocat. Inst. Ecol. Eng. 2023, 36, 1–9. [Google Scholar]
- Zhuang, Z.F. A Great Ecological Project: China Natural Forest Conservation Programme. World For. Res. 2001, 14, 47–54. [Google Scholar]
- Zhang, P.C.; Shao, G.F.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B.; Li, Q.L. China’s Forest Policy for the 21st Century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Shao, M.A. Soil and water loss from the Loess Plateau in China. J. Arid. Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Cao, W.; Huang, L.; Huhe, T.L. Assessing Ecological Effects of Natural Forest Protection Project. J. Yangtze River Sci. Res. Inst. 2023, 40, 73–80. [Google Scholar]
- Chen, P. Natural Forest Protection: An Overview Abroad and a Review at Home. J. Beijing For. Univ. (Soc. Sci.) 2004, 3, 50–54. [Google Scholar]
- Cao, Y.K.; Huang, X.Q.; Zhu, Z.F. A Summary of Benefit Evaluation of Natural Forest Protection Project in China. Ecol. Econ. 2018, 34, 107–111+179. [Google Scholar]
- H T.T. Study on Carbon Potential of the Natural Forest Protection Program Afforestation in China. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2012. [Google Scholar]
- Yang, L.X. Current situation and countermeasures on natural forest protection system in Wuding county. For. Constr. 2022, 6, 36–39. [Google Scholar]
- Li, Z.; Li, J.Z.; Zhao, Y.H.; Xiao, S.S.; Zhu, B.Q. Analysis and Countermeasures of Natural Forest Protection and Restoration in Jiangxi Province. For. Investig. Des. 2023, 52, 59–63+89. [Google Scholar]
- Guo, R.X.; Bai, X.Y.; Bao, L.D.; Guo, Z. Analysis on Dynamic Trend of Forest Resources in Southwest China Natural Forest Protection Project Area. China For. Econ. 2019, 132–134. [Google Scholar]
- Shu, M.Y.; Wu, J.Z.; Li, C.Y.; Ding, S. Analysis on the Evolution of Forest Carbon Sinks Efficiency in Natural Forest Protection Project Regions. Issues For. Econ. 2022, 42, 490–497. [Google Scholar]
- Hu, H.F.; Liu, G.H. Carbon sequestration of China’s National Natural Forest Protection Project. Acta Ecol. Sin. 2006, 26, 291–296. [Google Scholar]
- Guo, Y.; Zhou, W.M.; Yu, D.P.; Zhou, L.; Gu, X.P.; Wu, Z.J.; Wu, S.N.; Wang, X.Y.; Dai, L.M. Research on Forest Vegetation Carbon Storage under the National Forest Protection Project in the Upper Reaches of Yangtze River. Resour. Environ. Yangtze Basin 2015, 24, 221–228. [Google Scholar]
- Pang, Y.; Meng, S.L.; Shi, K.Y.; Yu, T.; Wang, X.H.; Niu, X.D.; Zhao, D.; Liu, L.Y.; Feng, M.; Qin, X.L.; et al. Forest coverage monitoring in the Natural Forest Protection Project area of China. Acta Ecol. Sin. 2021, 41, 5080–5092. [Google Scholar]
- Chen, Q.; Chen, Y.F.; Ju, H.B. Vegetation Change Monitoring for the Natural Forest Protection Based on Spatial Analysis Techniques. For. Res. 2013, 26, 736–743. [Google Scholar]
- Lai, J.M.; Yang, W.N. Dynamic changes of vegetation cover in natural forest area of western Sichuan in recent 29 years based on RS. Remote Sens. Land Resour. 2018, 30, 132–138. [Google Scholar]
- Li, G.W.; Zhao, W.; Wei, Y.W.; Fang, X.M.; Gao, B.; Dai, L.M. Evaluation on the influence of natural forest protection program on forest ecosystem service function in Changbai mountain. Acta Ecol. Sin. 2015, 35, 984–992. [Google Scholar]
- Guo, Z.; She, H.; Zang, R.G. Evaluation on Comprehensive Benefit of Natural Forest Protection Project in Southwest China. J. Anhui Agric. Sci. 2011, 39, 15035–15038. [Google Scholar]
- Lai, J.M.; Zhou, G.H.; Hu, T.X.; Yang, W.N. Dynamic Analysis of Soil Erosion in Natural Forest Protection Project Area of Western Sichuan Province Based on RS and GIS. Bull. Soil Water Conserv. 2013, 33, 276–279. [Google Scholar]
- Liang, P.X. Social Benefit Evaluation of Natural Forest Resource Protection Project in Qinghai Province. Mod. Agric. Sci. Technol. 2020, 14, 141–142. [Google Scholar]
- Li, T.T.; Wu, S.R.; Zhang, C.; Lu, J.; Ye, B. Research on Social Benefit Evaluation of National Natural Forest Resource Protection Project. Ecol. Econ. 2023, 39, 124–128. [Google Scholar]
- Zhu, Z.F.; Guan, J.; Cao, Y.K.; Song, Q.H. Study on Ecological Benefit Evaluation of Natural Forest Protection Project in Ecological Incremental Dimensions. Issues For. Econ. 2020, 40, 563–571. [Google Scholar]
- Zhang, W.H.; Xu, P.; Zhuang, J. Achievements and suggestions on construction of natural forest protection project in Tibet. For. Constr. 2019, 15–17. [Google Scholar]
- Ma, Y.B.; Zhao, R. Research on the Finance and Taxation Policy of Protecting Natural Forest Resources. Issues For. Econ. 2020, 40, 668–672. [Google Scholar]
- Zhu, H.G.; Zhang, Y.T.; Ning, Z. Implementation Effect of Forest Tending Subsidy Policy in Natural Forest Protection Project. Issues For. Econ. 2020, 40, 659–667. [Google Scholar]
- Wang, X.Q. Problems and Countermeasures of Forest Management and Protection in Natural Forest Protection Project. China For. Econ. 2019, 2, 115–116. [Google Scholar]
- GB/T 38582-2020; State Forestry Administration. Specifications fo Assessment to Forest Ecosystem Services. Standards Press of China: Beijing, China, 2020. (In Chinese)
- Xu, T.Y.; Niu, X.; Wang, B.; Song, Q.F. Evaluation on leading functions of forest ecosystem services in Liaoning Province based onnature-based solutions. Bull. Soil Water Conserv. 2021, 41, 191–197. [Google Scholar]
- Wang, B.; Niu, X.; Wei, W. National forest ecosystem inventory system of China: Methodology and applications. Forests 2020, 11, 732. [Google Scholar] [CrossRef]
- Wang, B.; Ren, X.X.; Hu, W. Assessment of Forest Ecosystem Services Value in China. Sci. Silvae Sin. 2011, 47, 145–153. [Google Scholar]
- Liu, S.C.; Shao, Q.Q.; Niu, L.N.; Ning, J.; Liu, G.B.; Zhang, X.Y.; Huang, H.B. Changes of ecological and the characteristics of trade-offs and synergies ofecosystem services in the upper reaches of the Yangtze River. Acta Ecol. Sin. 2023, 43, 1028–1039. [Google Scholar]
- GB/T 33027-2016; State Forestry Administration. Methodology for Long-Term Observation of Forest Ecosystem. Standards Press of China: Beijing, China, 2016. (In Chinese)
- GB/T 35377-2017; State Forestry Administration. Indicator System for Long-Term Observation of Forest Ecosystem. Standards Press of China: Beijing, China, 2017. (In Chinese)
- Zhang, Y.L.; Guo, Y.; Hu, H.Q. Characteristics of Forest Fire Data in Southwest China during 2001–2017. J. Northwest For. Univ. 2021, 36, 179–186. [Google Scholar]
- Liu, W.L.; Jiang, R.H. Status of forest resources in Tibet and suggestions for management measures. Tibet. Sci. Technol. 2007, 3, 44–48. [Google Scholar]
- GB/T 38590-2020; State Forestry Administration. Technical Regulations for Continuous Forest Inventory. Standards Press of China: Beijing, China, 2020. (In Chinese)
- Deng, Q.X.; Huang, B.L.; Wen, Q.Z.; Hua, C.L.; Tao, J.; Zheng, J.X. Dynamic of Pinus yunnanensis Forest Resources in Yunnan. J. Nat. Resour. 2014, 29, 1411–1419. [Google Scholar]
- Zheng, Y.; Huang, X.H.; Wang, D.W.; Li, G.Q. Research Advance and Prospects of Pinus yunnanensis Franch. Mod. Agric. Sci. Technol. 2013, 13, 169–171. [Google Scholar]
- He, J.; Xiao, Z.L.; Chen, W.J.; Liu, F.F.; Chen, Y.P.; Jing, S.H. Analysis of spatial structure characteristics of natural secondary broad-leaved mixed forest: Taking Yuan’an county of Hubei province as an example. J. Cent. South Univ. For. Technol. 2020, 40, 7–16. [Google Scholar]
- Zheng, K.R.; Huang, X.; Zhou, Z.X.; Huang, G.T.; Sun, L.S. Position and Function of Pinus massoniana Forest in Forest Ecological Service in Hubei Province. Hubei For. Sci. Technol. 2019, 48, 6–11+32. [Google Scholar]
- Rao, E.M.; Xiao, Y. Spatial characteristics and effects of soil conservation service in Sichuan Province. Acta Ecol. Sin. 2018, 38, 8741–8749. [Google Scholar]
- Xue, J.; Li, Z.X.; Feng, Q.; Miao, C.Y.; Deng, X.H.; Di, Z.H.; Ye, A.Z.; Gong, W.; Zhang, B.J.; Gui, J.; et al. Spatiotemporal variation characteristics of water conservation amount in the Qilian Mountains from 1980 to 2017. J. Glaciol. Geocryol. 2022, 44, 1–13. [Google Scholar]
- Wei, Q.; Zhang, Q.L.; Dai, H.Y.; Guo, X. Surface runoff and soil erosion of different vegetations in Daqing Mountain, Inner Mongolia. J. Beijing For. Univ. 2008, 30, 111–117. [Google Scholar]
- Peng, Y.; Ding, G.J. Study of the litter reserves and water-holding capacity of Pinus massoniana Lamb. with different stand ages. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2008, 51, 43–46. [Google Scholar]
- Wang, X.K.; Liu, W.W. Factors affecting carbon sequestration in forests. For. Ecol. 2021, 3, 40–41. [Google Scholar]
- Chen, H.; Zhang, J.E. Review on factors influencing the concentration distribution of negative air ions. Ecol. Sci. 2010, 29, 181–185. [Google Scholar] [CrossRef]
- Meng, J.J.; Zhang, Y. The Distribution of Air Anion Concentration above Ground at Some Scenic Sites in Guangxi. Res. Environ. Sci. 2004, 17, 25–27. [Google Scholar]
- Zhang, W.K.; Wang, B.; Niu, X. The leaf microstructure of different trees and its impact on air particles-capturing ability. Chin. J. Ecol. 2017, 36, 2507–2513. [Google Scholar]
- Zhang, Y.R.; Liu, X.T.; Gao, W.Q.; Li, H.K. Dynamic changes of forest vegetation carbon storage and the characteristics of carbon sink (source) in the Natural Forest Protection Project region for the past 20 years. Acta Ecol. Sin. 2021, 41, 5093–5105. [Google Scholar]
- Yang, S.S.; Lu, F.; Zhang, L. Comprehensive benefit assessment of natural forest protection project. Environ. Prot. Sci. 2022, 48, 18–26. [Google Scholar]
- Liu, Y.J.; Cao, M.R.; Xiong, J.W.; Nan, N.F.; Chen, Z.; Shu, Y. Impact Assessment of Natural Forest Protection Project Policies on National Nature Reserve. Cent. South For. Inventory Plan. 2016, 35, 5–9+35. [Google Scholar]
- Li, C.Y.; Zhu, J.H.; Guo, X.Y.; Li, Q.; Zhang, Q.R.; Liu, H.Y.; Xiao, W.F. Spatiotemporal variations of habitat quality in forestry ecological project region of the Yangtze River Economic Belt. Chin. J. Ecol. 2021, 40, 3788–3799. [Google Scholar]
- Huang, J.H.; Huang, Z.L.; Ai, X.R. Service Functions of Natural Forest Ecosystem in the Three Gorges Region in Hubei Province. Hubei For. Sci. Technol. 2015, 44, 1–4+49. [Google Scholar]
- Yao, J.S.; Yang, P.; Zhai, H.; Wang, L.M. Study on Landscape Pattern Change of Natural Forest Resources in Sichuan Province at Recent 20 Years. Resour. Dev. Mark. 2019, 35, 1258–1261.36. [Google Scholar]
- Tang, Y.Z.; Shao, Q.Q. Water Conservation Capacity of Forest Ecosystem and Its Spatial Variation in the Upper Reaches of Wujiang River. J. Geo-Inf. Sci. 2016, 18, 987–999. [Google Scholar]
- Shi, H.X.; Wang, B.; Niu, X. Ecosystem services of Grain for Green Project in the provinces of the upper and middle reaches of Yangtze and Yellow River. Chin. J. Ecol. 2016, 35, 2903–2911. [Google Scholar]
- Wang, X.B.; Yu, S.L.; Duan, S.Q. Management Achievement and Developing Suggestions of Xishuangbanna Reserve in Yunnan Province. Mod. Agric. Sci. Technol. 2012, 1, 331–334+339. [Google Scholar]
- Xu, J.H.; Zheng, J.X.; Yu, C.Y.; Hua, C.L.; Wang, Y. Present Status and Effect Evaluation of Natural Reserve Management in Yunnan Province. For. Inventory Plan. 2018, 43, 114–119. [Google Scholar]
- Li, S.M.; Xie, G.D.; Zhang, C.X.; Qi, Y. Intra-annual dynamics of soil conservation value in forest ecosystem. Acta Ecol. Sin. 2010, 30, 3482–3490. [Google Scholar]
- Yang, S.-W. Analysis on the Effect and Problems of the Natural Forest Protection Project in Shangri-La City. Guizhou For. Sci. Technol. 2021, 49, 60–64. [Google Scholar]
- Man, Z.C.; Su, C.J.; Xu, Y. An Analysis on Water Conservation Capacity Variation of Forest in the Upper Reaches of Minjiang River. Res. Soil Water Conserv. 2007, 14, 223–225+230. [Google Scholar]
- Wang, B.; Cui, X.H.; Liu, H.J.; Bai, X.L. Analysis of Regional Meteorological Factors for Dagangshan Forest Ecosystem Research Station. For. Res. 2002, 15, 693–699. [Google Scholar]
- Gong, S.H.; Xiao, Y.; Zheng, H.; Xiao, Y.; Ouyang, Z.Y. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecol. Sin. 2017, 37, 2455–2462. [Google Scholar]
- Tang, J.; Chen, Z.L.; Fang, J.P. Estimation of Water Conservation in Tibet Forest Ecosystem Based on the Energy Value. J. Plateau Agric. 2018, 2, 654–659. [Google Scholar]
- Zhao, Y.Y.; Wang, Y.J.; Wang, Y.Y.; Zhao, Z.J.; Liu, N.; Chen, L. Plant biodiversity of different water conservation forest models and their relationship with soil properties in northern water source area of Chongqing city, southwestern China. Ecol. Environ. Sci. 2009, 18, 2260–2266. [Google Scholar]
- Luo, J.W. Water Conservation Functions of Mixed Plantations among Pinus massoniana and Broad-leaved Trees. Prot. For. Sci. Technol. 2006, 6, 12–14. [Google Scholar]
- Chen, S.Q. The Water Holding Capacity and Soil Fertility in the Mixed Forest of Cunninghamia lanceolata and Altingia gracilides. Acta Ecol. Sin. 2002, 22, 957–961. [Google Scholar]
Province | Year 1998 | Year 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Area (104 ha) | Proportion (%) | Volume (108 m3) | Proportion (%) | Area (104 ha) | Proportion (%) | Volume (108 m3) | Proportion (%) | |
Sichuan | 1464.34 | 43.74% | 14.95 | 53.95% | 1839.77 | 39.74% | 18.61 | 47.01% |
Yunnan | 976.09 | 29.16% | 8.85 | 31.94% | 1268.83 | 27.41% | 12.47 | 31.50% |
Guizhou | 316.06 | 9.44% | 1.26 | 4.54% | 573.66 | 12.39% | 3.03 | 7.65% |
Hubei | 285.09 | 8.52% | 0.94 | 3.40% | 470.38 | 10.16% | 2.57 | 6.50% |
Chongqing | 183.18 | 5.47% | 0.87 | 3.13% | 354.97 | 7.67% | 2.07 | 5.22% |
TAR | 122.73 | 3.67% | 0.84 | 3.05% | 122.25 | 2.64% | 0.84 | 2.12% |
Total | 3347.49 | 100.00% | 27.71 | 100.00% | 4629.86 | 100.00% | 39.59 | 100.00% |
Year 1998 | Year 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Area (104 ha) | Proportion (%) | Volume (108 m3) | Proportion (%) | Area (104 ha) | Proportion (%) | Volume (108 m3) | Proportion (%) | |
Young forest | 966.59 | 36.11% | 2.99 | 10.77% | 1120.42 | 31.12% | 5.00 | 12.64% |
Middle aged forest | 735.69 | 27.48% | 5.29 | 19.08% | 1022.35 | 28.40% | 9.15 | 23.11% |
Near-mature forest | 300.8 | 11.24% | 3.44 | 12.39% | 556.71 | 15.46% | 6.36 | 16.06% |
Mature forest | 359.15 | 13.42% | 6.93 | 25.01% | 521.39 | 14.48% | 8.65 | 21.84% |
Over-mature forest | 314.63 | 11.75% | 9.08 | 32.74% | 378.98 | 10.53% | 10.43 | 26.34% |
Total | 2676.86 | 100.00% | 27.72 | 100.00% | 3599.85 | 100.00% | 39.59 | 100.00% |
Function | Evaluation Index | Physical Quality | Increment | |
---|---|---|---|---|
1998 | 2020 | |||
Soil conservation | Soil erosion control (108 t/a) | 14.72 | 20.83 | 6.11 |
Protection of soil fertility (104 t/a) | 6563.44 | 10,628.63 | 4065.19 | |
Nutrient accumulation | N, P, K accumulation (104 t/a) | 147.56 | 226.52 | 78.96 |
Water conservation | Water regulation (108 m3/a) | 1132.59 | 1651.48 | 518.89 |
Carbon sequestration and oxygen release | Carbon sequestration (104 t/a) | 5247.43 | 7824.30 | 2576.87 |
Oxygen release (104 t/a) | 12,484.15 | 18,515.00 | 6030.85 | |
Purification of atmospheric environment | Negative ion supply (1025 Negative ions/a) | 29.48 | 49.42 | 19.94 |
Pollutant absorption (108 kg/a) | 57.96 | 90.66 | 32.70 | |
TSP retention (104 kg/a) | 7858.71 | 12,351.38 | 4492.67 | |
PM10 retention (104 kg/a) | 15,420.55 | 23,729.14 | 8308.59 | |
PM2.5 retention/ (104 kg/a) | 3416.68 | 5255.36 | 1838.68 |
Soil Conservation/108 Yuan | Nutrient Accumulation/108 Yuan | Water Conservation/108 Yuan | Carbon Sequestration and Oxygen Release/108 Yuan | Purification of Atmospheric Environment/108 Yuan | Biodiversity Conservation/108 Yuan | Total/108 Yuan | |
---|---|---|---|---|---|---|---|
1998 | 3071.64 | 230.86 | 5573.76 | 1525.68 | 2525.90 | 6976.65 | 19,904.48 |
2020 | 4342.92 | 403.23 | 8410.69 | 2459.85 | 4050.66 | 12,944.26 | 32,611.61 |
Increment | 1271.28 | 172.37 | 2836.93 | 934.17 | 1524.76 | 5967.61 | 12,707.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Niu, X.; Wang, B.; Song, Q. Dynamic Change of Forest Ecological Benefit of the Natural Forest Protection Project in the Upper Reaches of Yangtze River. Forests 2023, 14, 1599. https://doi.org/10.3390/f14081599
Wang Y, Niu X, Wang B, Song Q. Dynamic Change of Forest Ecological Benefit of the Natural Forest Protection Project in the Upper Reaches of Yangtze River. Forests. 2023; 14(8):1599. https://doi.org/10.3390/f14081599
Chicago/Turabian StyleWang, Yihui, Xiang Niu, Bing Wang, and Qingfeng Song. 2023. "Dynamic Change of Forest Ecological Benefit of the Natural Forest Protection Project in the Upper Reaches of Yangtze River" Forests 14, no. 8: 1599. https://doi.org/10.3390/f14081599
APA StyleWang, Y., Niu, X., Wang, B., & Song, Q. (2023). Dynamic Change of Forest Ecological Benefit of the Natural Forest Protection Project in the Upper Reaches of Yangtze River. Forests, 14(8), 1599. https://doi.org/10.3390/f14081599