Establishment of Fitted Models for Topographical Factors and Coexisting Plants Influencing Distribution of Natural Wild Jujube
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Investigation Data
2.3. Statistical Methods
3. Results
3.1. Effect of Altitude on Wild Jujube Distribution
3.2. Effect of Slope Aspect, Slope Position and Slope Degree on Wild Jujube Distribution
3.3. Effect of Coexisting Plants on Wild Jujube Distribution
4. Discussion
4.1. The Influence of Topographic Factors Such as Altitude, Slope Aspect, Slope Position and Slope Degree on Wild Jujube Distribution
4.2. Vitex negundo var. heterophylla Is a Coexisting Plant Species
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Wu, L.; Niu, W.; Zhang, P.; Liu, H.; Li, H.; Wang, S. Analysis of drought-tolerance of Ziziphus jujuba var. spinosa. For. Sci. Technol. 2021, 3, 88–91. [Google Scholar] [CrossRef]
- Park, H.J.; Jung, I.H.; Kwon, H.; Yu, J.; Jo, E.; Kim, H.; Park, S.J.; Lee, Y.C.; Kim, D.H.; Ryu, J.H. The ethanol extract of Zizyphus jujuba var. spinosa seeds ameliorates the memory deficits in Alzheimer’s disease model mice. J. Ethnopharmacol. 2019, 233, 73–79. [Google Scholar] [PubMed]
- Zhang, M.; Liu, J.; Zhang, Y.; Xie, J. Ziziphi spinosae Semen: A natural herb resource for treating neurological disorders. Curr. Top. Med. Chem. 2022, 22, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Song, L. Chinese Materia Medica; Shanghai Science and Technology Press: Shanghai, China, 1999. [Google Scholar]
- Wang, D.; Ho, C.T.; Bai, N. Ziziphi spinosae Semen: An updated review on pharmacological activity, quality control, and application. J. Food Biochem. 2022, 46, e14153. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Xu, X.; Guo, S.; Xie, H.; Yan, H.; Ma, X.; Niu, Y.; Duan, J. Wild jujube (Ziziphus jujuba var. spinosa): A review of its phytonutrients, health benefits, metabolism, and applications. J. Agric. Food Chem. 2022, 70, 7871–7886. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhang, N. Relationship between Temporal and Spatial Characteristics of Vegetation Coverage and Topographic Factors in Fenhe River Basin. Bull. Soil Water Conserv. 2022, 42, 353–359. [Google Scholar]
- Sun, L.; Li, Q.; Pei, L.; Wu, H.; Chen, L. Effects of topographic factors on soil physical and chemical properties and plant species. J. Irrig. Drain. 2020, 39, 120–127. [Google Scholar]
- Wang, Y.; Xiao, B.; Wang, W.; Yu, X.; Zhang, X. Bryophyte diversity and microhabitat characteristics of bryophyte-dominated biological soil crusts development in water−wind erosion crisscross region of the northern Loess Plateau, China. Chin. J. Appl. Environ. Biol. 2022, 33, 1729–1737. [Google Scholar]
- Jiang, L.; Wei, T.; Li, Y.; Wei, A. Effects of topographical factors on tree species distribution of shelter forest in Loess hilly region of northern Shaanxi. Arid. Land Geogr. 2021, 44, 1763–1771. [Google Scholar]
- Zhu, J.; Wei, X.; Yang, J.; Zhang, J. Effects of topographic factors on tree species diversity in subtropical coniferous and broad-leaved mixed Forests. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 153–161. [Google Scholar]
- Yang, Q.; Li, K.; Yu, L. The relationship between forest landscape and terrain factors in Qiannan prefecture of Guizhou province. For. Sci. Technol. Inf. 2022, 54, 1–4. [Google Scholar]
- Liu, T.; Hou, L. Effects of terrain factors on land use and landscape pattern change in terrain transition zone of Northern Sichuan province. Bull. Soil Water Conserv. 2020, 40, 75–82, 90. [Google Scholar]
- Pan, Y.; Bai, R.; Shi, Y. Research on the landscape characteristics of traditional settlement under the influence of topographic factors—A case of Weizhou Island in Beibu gulf. Chin. Landscpe Archit. 2021, 37, 6. [Google Scholar]
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.; Ye, X.; Fan, B. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2012, 132, 108256. [Google Scholar] [CrossRef]
- Liu, A. Suitable Ecological Regionalization of Ziziphi spinosae Semen in the Hebei Province; Hebei University of Chinese Medicine: Shijiazhuang, China, 2019. [Google Scholar]
- Wang, F.; Sun, X.; Dong, J.; Cui, R.; Liu, X.; Lim, X.; Wang, H.; He, T.; Zheng, P.; Wang, R. A primary study of breeding system of Ziziphus jujuba var. spinosa. Sci. Rep. 2021, 11, 10318. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, X.; Wang, Z.; Jing, H.; Fan, B. Prediction of potential distribution of Ziziphus jujuba var. spinosa in China under context of climate change. Sci. Silvae Sin. 2021, 57, 158–168. [Google Scholar]
- Nan, X. Study on the Functional Diversity of Plant Communities on Different Slopes in the Alpine Meadow of Gannan; Northwest Normal University: Lanzhou, China, 2020. [Google Scholar]
- Zhao, X.; Zhai, S.; Li, J.; Sun, S. Effect of different slope conditions on soil moisture of Amygdalus pedunculate woodland in Mu Us sandy land. Bull. Soil Water Conserv. 2020, 40, 45–52. [Google Scholar]
- Meng, W.; Wang, T.; Zhao, X.; Zhu, L. Effects of different slope positions on soil moisture and physiological indicators of Artemisia ordosica root zone in the Mu Us sandy land. Biotechnol. Bull. 2019, 35, 57–63. [Google Scholar]
- Zhuo, W.; Li, L.; Pan, Y.; Jiang, Y.; Lin, H.; He, Y.; Fang, Y.; Liang, S.; Su, Q. Effects of different slope positions on shrub species diversity and soil factors in Guilin hilly area. J. Guangxi Norm. Univ. (Nat. Sci. Ed.) 2021. [Google Scholar] [CrossRef]
- Jing, T.; Hu, C.; Qiu, C.; Li, C.; Zhou, J.; Zhang, Q.; Bai, C. Spatial variability and its controlling topographic factors of soil moisture during spring plowing season in black soil hilly region of Northeast China. Res. Soil Water Conserv. 2022, 29, 58–65. [Google Scholar]
- Li, W.; Liu, M.; Yi, J.; Zhang, H.; Lu, S.; Bai, Y. Soil water retention curve and hydraulic properties at different slope positions in the Three Gorges Mountains area. Bull. Soil Water Conserv. 2021, 35, 135–142. [Google Scholar]
- Cui, B.; An, Y.; Zhang, Q.; Pu, M.; Chen, K. Effect of slope on plant diversity of a Stellera chamaejasme community in subalpine meadow. Pratacultural Sci. 2020, 38, 823–834. [Google Scholar]
- Zheng, C.; Duan, J.; Shi, W.; Bao, G.; Qiu, X. Phytoplankton community structure and its relationship with water environmental factors in Xinghai lake. Chin. J. Fish. 2020, 33, 46–52. [Google Scholar]
- Liu, X.; Yang, G.; Chen, H.; Yu, Z. Spectral characteristics of plant-soil mixture with spectral reflection measurement. J. Northeast. For. Univ. 2020, 48, 54–60. [Google Scholar]
- Yu, C.; Liu, C.; Liao, G.; Zhang, Y.; Chen, P.; Zhou, S.; Xu, D. A biomass estimation by regression method for herbaceous plant Spartina alterniflora in coastal wetlands. J. Appl. Oceanogr. 2022, 41, 149–155. [Google Scholar]
- Li, Z.; Liu, C.; Peng, X.; Xue, J.; Deng, H.; Zhou, L. Effects of different plant growth regulators on rapid propagation of three grape rootstocks based on quadratic regression orthogonal rotation. J. Fruit Sci. 2022, 1–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhan, Y. Effects of Cu(Ⅱ) on the growth of marine algae. Asian J. Ecotoxicol. 2009, 4, 114–122. [Google Scholar]
- Zhang, Y.; Yang, R.; Wang, X.; Zhan, Y. Effects of Cr(Ⅵ) on the growth of marine algae. Acta Sci. Circumstantiae 2011, 31, 865–872. [Google Scholar]
- Amissah, L.; Mohren, G.M.J.; Bongers, F.; William, D.; Poorter, L. Rainfall and temperature affect tree species distribution in Ghana. J. Trop. Ecol. 2014, 30, 435–446. [Google Scholar] [CrossRef]
- Wang, W.; He, H.; Thompson, F.R.; Fraser, J.S.; Dijak, W.D. Changes in forest biomass and tree species distribution under climate change in the northeastern United States. Landsc. Ecol. 2017, 32, 1399–1413. [Google Scholar] [CrossRef]
- Pelletier, J.; Chidumayo, E.; Trainor, A.; Siampale, A.; Mbindo, K. Distribution of tree species with high economic and livelihood value for Zambia. For. Ecol. Manag. 2019, 441, 280–292. [Google Scholar] [CrossRef]
- Yan, H.; Peng, L.; Tang, X. Modeling and impact analysis on distribution prediction of forest tree species in northeast China based on climate change. Sci. Silvae Sin. 2014, 50, 132–139. [Google Scholar]
- Zhang, X.; Wang, J.; Wang, M.; Yang, Y.; Zhao, C. Dominant climatic factors influencing the geographical distribution pattern of picea in China. Sci. Silvae Sin. 2020, 56, 1–11. [Google Scholar]
- Liu, Q.; Kang, M.; Liu, Q. Environmental gradient analysis and species group division of tree species distribution in Eastern Zhongtiao mountain. Chin. J. Ecol. 2006, 25, 1306–1311. [Google Scholar]
- Zhou, W.; Wei, T.; Liu, G.; Zhu, Q. Coupling relationship between Hippophae rhamnoides community and soil factor in typical returning farmland to forest area in northern Shaanxi province. Sci. Soil Water Conserv. 2020, 18, 1–9. [Google Scholar]
- Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Feng, B.; Shi, G.; Sun, C.; Li, C.; Zhang, X.; Dong, Q. Effect of slope aspect and elevation on vegetation distribution pattern of alpine mountain meadow. Acta Agrestia Sin. 2021, 29, 1166–1173. [Google Scholar]
- Wang, Y.; Wang, Y.; Chen, H.; Zhang, J.; Fan, Q.; Xai, Q.; Chen, J.; An, P. Advance in influence of altitudinal gradient on the distribution and quality formation of medicinal plants. Mod. Chin. Med. 2012, 14, 41–43. [Google Scholar]
- Xu, S.; He, X.; Yang, P.; Bai, T.; Fan, H.; Yin, K.; Yang, B.; Zheng, S. Effect of climatic factors on the banana growth and its fruit quality at different altitudes. J. Yunnan Agric. Univ. (Nat. Sci.) 2020, 35, 102–107. [Google Scholar]
- Chen, C.; Cui, D.; Yan, J.; Kasim, N.; Zhang, J.; Bayarta. The effect of altitude on spatial distribution of Prunus armeniaca L. in Turgen river basin. Chin. Wild Plant Resour. 2022, 41, 79–84. [Google Scholar]
- Yuan, Y.; Sun, G.; Yuan, M.; Zhang, Z. Distributional patterns of plant species richness along an elevational gradient in Saihanba. J. Anhui Agric. Univ. 2017, 44, 496–501. [Google Scholar]
- Zhu, G.; Chen, X.; Irshad, A.; Liu, J.; Zhi, W.; Jiao, X.; Zhou, G. Mechanism of plasticity of root vessel structure of Ziziphus jujuba var. spinosa adapting ecotopes along a natural drought gradient. Acta Pedol. Sin. 2018, 55, 764–773. [Google Scholar]
- Gao, K. Spatial and Temporal Variation of Soil Moisture in the Source Region of the Yellow River and Its Factors of Influence; Gansu Agricultural University: Lanzhou, China, 2018. [Google Scholar]
- Zhu, H.; Deng, R.; Wei, X. Spatial distribution of the root system of Ziziphus jujuba var. spinosa in response to a natural drought gradient ecotope. Acta Ecol. Sin. 2016, 36, 1539–1546. [Google Scholar]
- Wang, G.; Zhou, G.; Yang, L.; Li, Z. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecol. 2003, 165, 169–181. [Google Scholar] [CrossRef]
- Gaston, K. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef]
- Xu, M.; Ma, L.; Jia, Y.; Liu, M. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China. PLoS ONE 2017, 12, e0174231. [Google Scholar] [CrossRef] [Green Version]
- Kessler, M. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecol. 2000, 149, 181–193. [Google Scholar] [CrossRef]
- Macarthur, R. Geographical Ecology: Patterns of the Distribution of Species; Harper and Row: New York, NY, USA, 1972. [Google Scholar]
- Kluge, J.; Kessler, M.; Dunn, R.R. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob. Ecol. Biogeogr. 2006, 15, 358–371. [Google Scholar] [CrossRef]
- Fu, M.; Yang, H.; Yang, X. Quercus variabilis plantation community biomass structure characteristics under different site conditions. For. Resour. Manag. 2016, 3, 67–73. [Google Scholar] [CrossRef]
- Ferrer-Castán, D.; Vetaas, O.R. Pteridophyte richness, climate and topography in the Iberian Peninsula: Comparing spatial and nonspatial models of richness pattern. Glob. Ecol. Biogeogr. 2005, 14, 155–165. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Qu, L.; Zhou, D.; Dong, X. Characteristics of plant community structure and its relationship with aspect on Houji Island. J. Qingdao Agricul. Univ. (Nat. Sci.) 2022, 39, 208–211. [Google Scholar]
- Pei, X.; Li, X.; Ding, W.; Yan, Y.; Shang, C.; Wang, Y.; Du, C. Investigation and analysis on the germplasm resources of Ziziphus Jujuba Mill. Var. spinosa in Shanxi province. Chin. J. Ethnomed. Ethnopharm. 2022, 31, 49–54, 66. [Google Scholar]
- Wu, Y.; Hua, M.; Gong, J.; Dong, X.; Li, H.; Cao, M.; Wang, S. Study on biological characteristics of wild jujube seeds. Seeds 2022, 41, 80–87. [Google Scholar]
- Tang, Y.; Wen, Z.; Liu, J.; Yang, Y.; Wang, Y. Adaptation mechanism of Robinia pseudoacacia under different site conditions in loess hill and gully region. Bull. Soil Water Conserv. 2019, 39, 46–53. [Google Scholar]
- Zhang, X.; Shangguan, Z.; Wang, J.; Mao, N. The regeneration characteristics and affecting factors of Pinus tabulaeformis artificial forests of Ziwu Mountains, China. Mt. Res. 2014, 32, 561–567. [Google Scholar]
- Jiao, X.; Liu, G. Growth and its influencing factors of Pinus tabulaeformis in the Loess Plateau of Shaanxi Province. Acta Bot. Boreali-Occident. Sin. 2009, 29, 1026–1032. [Google Scholar]
- Liu, K.; Zhu, Y.; Yang, M.; Wu, M.; Cheng, F.; Wu, Y. Diameter and height class structure distribution of Parashorea chinensis Wang Hsie. Plantations in different slope directions. J. South. Agric. 2018, 49, 763–767. [Google Scholar]
- Yu, X. Effects of different slope directions and positions on the growth of Ormosia hosiei in west Hubei. Anhui Agric. Sci. Bull. 2022, 28, 47, 129. [Google Scholar]
- Zhang, X. Slope aspect distribution of mountain vegetation in Guozigou, Yili. J. Bingtuan Educ. Inst. 1999, 3, 5–7. [Google Scholar]
- Sun, Q.; Wang, S.; Zhao, S.; Li, J.; Dao, R.; Zhang, J.; Wang, Y. Species diversity of different plant communities at estuary of Guanmenlazi reservoir, Liao river basin. J. Inn. Mong. Univ. 2014, 45, 591–598. [Google Scholar]
- Pan, Z.; Yu, F.; Wang, Z.; Li, S.; Zhang, Y. Effects of slope aspect and position on temporal and spatial variation of soil water content on Alfalfa Land in loess hilly region of South Ningxia Hui autonomous region. Res. Soil Water Conserv. 2010, 17, 141–144. [Google Scholar]
- Liu, J.; Xue, J. Impacts of slope gradient on the characteristics of Vetiveria zizanioides community in early-stage. Grassl. Turf 2010, 30, 56–61. [Google Scholar]
- Fang, C.; Yuan, Z.; Liu, X.; Pei, J.; Zhao, D.; Ye, J. Effect of slope on soil properties and the Interaction of Caragana tibetica shrub Species in Loess plateau of China. J. Desert Res. 2015, 35, 1607–1611. [Google Scholar]
- Zhang, Q. Effect of Topography on Plant Diversity Patterns in Alpine Meadow Using Multi-Scale Analysis—Taking Hezuo City as an Example; Nanjing Normal University: Nanjing, China, 2019. [Google Scholar]
- Li, Q.; Rong, L.; Wang, M. Effects of topography on diversity and distribution patters of plant species in Karst mountains area. Bull. Soil Water Conserv. 2019, 39, 27–34. [Google Scholar]
- Wang, X.; Hu, D.; Rao, J.; Tang, X. Primary study on reproductive traits of Hosta ventricosa and its relationship with slope of distribution land. J. Guizhou Norm. Univ. (Nat. Sci.) 2019, 37, 19–23. [Google Scholar]
- Zhang, X.; Zhao, L.; Kang, L. Evolutionary mechanisms of species coexistence in ecological communities. Biodivers. Sc. 2001, 9, 8–17. [Google Scholar]
- Li, J.; Pan, P.; Ouyang, X.; Peng, S.; Deng, W.; Ning, J. Interspecific association and species coexistence mechanism of evergreen broad-leaved forest in Lushan Mountain. Chin. J. Ecol. 2022, 41, 1474–1481. [Google Scholar]
- Shu, R.; Yin, X.; Li, L.; Long, Y.; Gu, G.; Long, H.; Wu, Q. Regulation of companion plants on actinidia Heterodera glycines and their effects on the quality and yield of kiwifruit. China Plant Prot. 2021, 41, 63–70. [Google Scholar]
- Wu, H.; Yang, Q.; Zeng, J.; Xiong, Z.; Liu, Y.; Xiao, J. Effects of different grass intercropping treatments on citrus rrchard temperature and yield. Acta Agric. Univ. Jiangxiensis 2015, 37, 239–248. [Google Scholar]
- Wang, N. Effect of Slope Aspect of Biomass and Carbon Storage of Vitex negundo var. heterophylla Shrub in Low Mountains and Hilly Area of Taihang Mountains; Hebei Agricultural University: Baoding, China, 2020. [Google Scholar]
- Chen, J.; Zhang, L.; Zhang, G.; Zhang, C.; Zhen, W.; Liu, D. Drought tolerance of six garden species. J. Trop. Subtrop. Bot. 2020, 28, 310–316. [Google Scholar]
- Liu, C.; Ma, C.; Wang, L.; Li, X.; Li, X. Water-consumption characteristics and Stem Xylem Anatomical Structure of Ziziphus jujuba and Vitex negundo var. heterophylla. Bull. Soil Water Conserv. 2017, 37, 92–97. [Google Scholar]
- Wei, J.; Tang, L.; Lou, X.; Hou, T.; Chu, Y.; Liu, Y.; Liu, B.; Wang, N.; Qian, H. GC-MS analysis of constituents of volatile oil in different parts of Vitex negundo var. heterophylla. Sci. Technol. Food Ind. 2022, 43, 310–316. [Google Scholar]
- Liu, X.; Cao, H.; Tian, G. Study on essential oil obtained from seeds of wild Vitex negundo. Amino Acids Biot. Resour. 2010, 32, 75–78. [Google Scholar]
- Bai, P.; Hu, R.; Bian, D.; Liu, B.; Li, N.; Hong, C. Laboratory toxicity Evaluation of Vitex negundo Extracts on Lipaphis erysimi. Tianjin Agric. Sci. 2022, 28, 57–60. [Google Scholar]
Order | Latin Name | Correlation Coefficient to Wild Jujube |
---|---|---|
1 | Cynanchum thesioides (Freyn) K. Schum. | 0.259 ** |
2 | Orostachys fimbriatus (rostachys fir) | 0.227 ** |
3 | Vitex negundo var. heterophylla | 0.226 ** |
4 | Melilotus officinalis | 0.223 ** |
5 | Speranskiae tuberculatae (Bge.) Baill. | 0.200 ** |
6 | Patrinia scabiosaefolia Fisch. ex Trev. | 0.192 ** |
7 | Rubia cordifolia | 0.185 ** |
8 | Ampelopsis aconitifolia Bge. | 0.184 ** |
9 | Ipomoea nil (Linn.) choisy | 0.158 ** |
10 | Dianthus superbus L. | 0.152 ** |
11 | Salsola collina Pall. | 0.147 ** |
12 | Rhaponticum uniflorum (L.) DC. | 0.144 ** |
13 | Leptodermis oblonga Bunge | 0.141 ** |
14 | Clematis chinensis Osbeck | 0.136 ** |
15 | Bupleurum chinense DC. | 0.134 ** |
16 | Potentilla conferta Bge. | 0.133 ** |
17 | Erigeron canadensis L. | 0.131 ** |
18 | Phragmites australis (Cav.) Trin. ex Steud. | 0.131 ** |
19 | Zanthoxylum bungeanum Maxim. | 0.131 ** |
20 | Potentilla discolor Bge. | 0.122 ** |
21 | Geranium wilfordii Maxim. | 0.121 ** |
22 | Ailanthus altissima (Mill.) Swingle | 0.117 ** |
23 | Scorzonera sinensis Lipsch. et Krasch. ex Lipsch. | 0.115 ** |
24 | Grewia biloba G. Don | 0.111 * |
25 | Stellaria dichotoma L. var. lanceolata Bge. | 0.110 * |
26 | Morus alba Linn. | 0.108 * |
27 | Crepidiastrum sonchifolium (repidiastrum sonc) | 0.105 * |
28 | Arthraxon hispidus (Thunb.) Makino | 0.105 * |
29 | Speranskia tuberculata (Bunge) Baill. | 0.104 * |
30 | Tribulus terrestris L. | 0.098 * |
31 | Pyrus betulifolia Bge. | 0.091 * |
32 | Indigofera kirilowii Maxim. ex Palibin | 0.091 * |
33 | Selaginella sinensis (Desv.) Spring | 0.088 * |
34 | Oxalis corniculata L. | 0.088 * |
35 | Clematis hexapetala Pall. var. tchefouensis (Debeaux) S.Y.Hu | 0.087 * |
36 | Leonurus japonicus Houtt. | −0.087 * |
37 | Echinops sphaerocephalus L. | −0.089 * |
38 | Chenopodium glaucum L. | −0.120 ** |
Number of Wild Jujube | Occurrence Probability (F/%) | ||||
---|---|---|---|---|---|
F ≥ 80 | 70 ≤ F < 80 | 60 ≤ F < 70 | 50 ≤ F < 60 | 40 ≤ F < 50 | |
0 | Rubia cordifolia, Vitex negundo var. heterophylla | ||||
1~5 | Vitex negundo var. heterophylla | Rubia cordifolia | Bidens pilosa L., Selaginella sinensis, Melilotus officinalis | ||
6~10 | Vitex negundo var. heterophylla | Rubia cordifolia | Melilotus officinalis, Selaginella sinensis | Setaria viridis (L.) Beauv, Scorzonera sinensis, Cynanchum thesioides, Bidens pilosa, Arthraxon hispidus, Potentilla discolor | |
11~15 | Vitex negundo var. heterophylla | Rubia cordifolia, Melilotus officinalis | Scorzonera sinensis, Crepidiastrum sonchifolium, Bidens pilosa, Selaginella sinensis, Viola philippica Cav. | ||
16~20 | Rubia cordifolia, Vitex negundo var. heterophylla | Melilotus officinalis, Cynanchumthesioides, Setaria viridis | Scorzonera sinensis | Arthraxon hispidus, Orostachys fimbriatus | |
≥21 | Vitex negundo var. heterophylla | Rubia cordifolia | Bidens pilosa | Melilotus officinalis, Salsola collina, Cynanchum thesioides, Patrinia scabiosaefolia, Crepidiastrum sonchifolium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, Y.; Niu, W.; Zhang, P.; Wu, L.; Li, H.; Wang, S. Establishment of Fitted Models for Topographical Factors and Coexisting Plants Influencing Distribution of Natural Wild Jujube. Forests 2023, 14, 439. https://doi.org/10.3390/f14030439
Wu Y, Wang Y, Niu W, Zhang P, Wu L, Li H, Wang S. Establishment of Fitted Models for Topographical Factors and Coexisting Plants Influencing Distribution of Natural Wild Jujube. Forests. 2023; 14(3):439. https://doi.org/10.3390/f14030439
Chicago/Turabian StyleWu, Yansheng, Yanchao Wang, Weitao Niu, Pengfei Zhang, Lina Wu, Huan Li, and Senghu Wang. 2023. "Establishment of Fitted Models for Topographical Factors and Coexisting Plants Influencing Distribution of Natural Wild Jujube" Forests 14, no. 3: 439. https://doi.org/10.3390/f14030439
APA StyleWu, Y., Wang, Y., Niu, W., Zhang, P., Wu, L., Li, H., & Wang, S. (2023). Establishment of Fitted Models for Topographical Factors and Coexisting Plants Influencing Distribution of Natural Wild Jujube. Forests, 14(3), 439. https://doi.org/10.3390/f14030439