Influence of Thermo-Mechanical Densification (TMD) on the Properties of Structural Sawn Timber (Pinus sylvestris L.)
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Density of Wood before and after Thermo-Mechanical Densification
3.2. Dynamic Modulus of Elasticity before and after Thermo-Mechanical Densification
3.3. Structure of C Strength Grades before and after Thermo-Mechanical Densification
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef]
- Canadell, J.G.; Schulze, E.D. Global potential of biosphericcarbon management for climate mitigation. Nat. Commun. 2014, 5, 5282. [Google Scholar] [CrossRef]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef]
- Hajihassani, R.; Mohebby, B.; Najafi, S.K.; Navi, P.; Hajihassani, R.; Mohebby, B.; Najafi, S.K.; Navi, P. Influence of combined hygro-thermo-mechanical treatment on technical characteristics of poplar wood. Maderas-Cienc. Tecnol. 2018, 20, 117–128. [Google Scholar] [CrossRef]
- Knapic, S.; Santos, J.; Santos, J.A.D.; Pereira, H. Natural durability assessment of thermo-modified young wood of eucalyptus. Maderas-Cienc. Tecnol. 2018, 20, 489–498. [Google Scholar] [CrossRef]
- Kamperidou, V. The Biological Durability of Thermally- and Chemically-Modified Black Pine and Poplar Wood Against Basidiomycetes and Mold Action. Forests 2019, 10, 1111. [Google Scholar] [CrossRef]
- Dubey, M.K.; Pang, S.S.; Chauhan, S.; Walker, J. Dimensional Stability, Fungal Resistance and Mechanical Properties of Radiata Pine after Combined Thermo-Mechanical Compression and Oil Heat-Treatment. Holzforschung 2016, 70, 793–800. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. IForest 2017, 10, 895–908. [Google Scholar] [CrossRef]
- Lesar, B.; Humar, M.; Kamke, F.A.; Kutnar, A. Influence of the thermo-hydro-mechanical treatments of wood on the performance against wood-degrading fungi. Wood Sci. Technol. 2013, 47, 977–992. [Google Scholar] [CrossRef]
- Fang, C.H.; Cloutier, A.; Blanchet, P.; Koubaa, A. Densification of veneers combined with oil-heat treatment. Part I: Dimensional stability. BioResources 2011, 6, 373–385. [Google Scholar] [CrossRef]
- Navi, P.; Girardet, F. Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 2000, 54, 287–293. [Google Scholar] [CrossRef]
- Fang, C.H.; Cloutier, A.; Blanchet, P.; Koubaa, A. Densification of veneers combined with oil-heat treatment. Part II: Hygroscopicity and mechanical properties. BioResources 2012, 7, 925–935. [Google Scholar] [CrossRef]
- Heger, F.; Groux, M.; Girardet, F.; Welzbacher, C.; Rapp, A.O.; Navi, P. Mechanical and Durability Performance of THM-Densified Wood. In Proceedings of the Final Conference COST Action E22 Environmental Optimization of Wood Protection, Estoril, Portugal, 22–23 March 2004; pp. 1–10. [Google Scholar]
- Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013, 47, 1285–1319. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačiková, D.; Kačik, F. Structural changes of oak wood main components caused by thermal modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Grześkiewicz, M.; Poddębski, K. Thermal properties and density profile of poplar wood (Populus nigra L.) thermally and thermo-mechanically modified. In Proceedings of the 9th European Conference on Wood Modification, Arnhem, The Netherlands, 17–18 September 2018; pp. 1–6. [Google Scholar]
- Kozakiewicz, P.; Drożdżek, M.; Laskowska, A.; Grześkiewicz, M.; Bytner, O.; Radomski, A.; Zawadzki, J. Effects of thermal modification on selected physical properties of sapwood and heartwood of black poplar (Populus nigra L.). BioResources 2019, 14, 8391–8404. [Google Scholar] [CrossRef]
- Kozakiewicz, P.; Drożdżek, M.; Laskowska, A.; Grześkiewicz, M.; Bytner, O.; Radomski, A.; Mróz, A.; Betlej, I.; Zawadzki, J. Chemical Composition as a Factor Affecting the Mechanical Properties of Thermally Modified Black Poplar (Populus nigra L.). BioResources 2020, 15, 3915–3929. [Google Scholar] [CrossRef]
- Anshari, B.; Guan, Z.; Kitamori, A.; Jung, K.; Hassel, I.; Komatsu, K. Mechanical and moisture-dependent swelling properties of compressed Japanese cedar. Constr. Build. Mater. 2011, 25, 1718–1725. [Google Scholar] [CrossRef]
- Huang, C.; Chui, Y.; Gong, M.; Chana, F. Mechanical behaviour of wood compressed in radial direction: Part II. Influence of temperature and moisture content. J. Bioresour. Bioprod. 2020, 5, 266–275. [Google Scholar] [CrossRef]
- Rautkari, L.; Laine, K.; Kutnar, A.; Medved, S.; Hughes, M. Hardness and density profile of surface densifies and thermally modified Scots pine in relation to degree of densification. J. Mater. Sci. 2013, 48, 2370–2375. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, C.; Tu, D.; Zhu, Z.; Li, K. Surface densification of poplar solid wood: Efects of the process parameters on the density profile and hardness. BioResources 2019, 14, 4814–4831. [Google Scholar] [CrossRef]
- Welzbacher, C.R.; Wehsener, J.; Rapp, A.O.; Haller, P. Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale—Dimensional stability and durability aspects. Holz Roh. Werkst. 2008, 66, 39–49. [Google Scholar] [CrossRef]
- Yoshihara, H.; Tsunematsu, S. Bending and shear properties of compressed Sitka spruce. Wood Sci. Technol. 2007, 41, 117–131. [Google Scholar] [CrossRef]
- Bao, M.; Huang, X.; Jiang, M.; Yu, W.; Yu, Y. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood. J. Wood Sci. 2017, 63, 591–605. [Google Scholar] [CrossRef]
- He, Z.; Qi, Y.; Zhang, G.; Zhao, Y.; Dai, Y.; Liu, B.; Lian, C.; Dong, X.; Li, Y. Mechanical Properties and Dimensional Stability of Poplar Wood Modified by Pre-Compression and Post-Vacuum-Thermo Treatments. Polymers 2022, 14, 1571. [Google Scholar] [CrossRef] [PubMed]
- Şenol, S.; Budakçı, M. Effect of Thermo-Vibro-Mechanic Densification Process on the Gloss and Hardness Values of Some Wood Materials. BioResources 2019, 14, 9611–9627. [Google Scholar] [CrossRef]
- Cruz, N.; Avila, C.; Aguayo, M.G.; Cloutier, A.; Castillo, R. Impact of the Chemical Composition of Pinus radiata Wood on its Physical and Mechanical Properties Following Thermo-Hygromechanical Densification. BioResources 2018, 13, 2268–2282. [Google Scholar] [CrossRef]
- Balasso, M.; Kutnar, A.; Niemelä, E.P.; Mikuljan, M.; Nolan, G.; Kotlarewski, N.; Hunt, M.; Jacobs, A.; O’Reilly-Wapstra, J. Wood Properties Characterisation of Thermo-Hydro Mechanical Treated Plantation and Native Tasmanian Timber Species. Forests 2020, 11, 1189. [Google Scholar] [CrossRef]
- Pertuzzatti, A.; Missio, A.L.; Cademartori, P.H.G.; Santini, E.J.; Haselein, C.R.; Berger, C.; Gatto, D.A.; Tondi, G. Effect of Process Parameters in the Thermomechanical Densification of Pinus elliottii and Eucalyptus grandis Fast-growing Wood. BioResources 2018, 13, 1576–1590. [Google Scholar] [CrossRef]
- Carbal, J.P.; Kafle, B.; Subhani, M.; Reiner, J.; Ashraf, M. Densification of timber: A review on the process, material properties and application. J. Wood Sci. 2022, 68, 24. [Google Scholar] [CrossRef]
- Kutnar, A.; Kamke, F.A. Compression of wood under saturated steam, superheated steam, and transient conditions at 150 °C, 160 °C, and 170 °C. Wood Sci. Technol. 2012, 46, 73–88. [Google Scholar] [CrossRef]
- Kamke, F.A. Densified radiata pine for structural composites. Maderas. Cienc. Tecnol. 2006, 8, 83–92. [Google Scholar] [CrossRef]
- Esteves, B.; Ribeiro, F.; Gruz-Lopes, L.; Domingos, J.F.I. Densification and heat treatment of Martine pine wood. Wood Res. 2017, 62, 373–388. [Google Scholar]
- Ulker, O.; Imirzi, O.; Burdurlu, E. The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris L.). BioResources 2012, 7, 5581–5592. [Google Scholar] [CrossRef]
- Sözbir, G.D.; Bektaş, İ.; Ak, A.K. Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas Cienc. Tecnol. 2019, 21, 481–492. [Google Scholar] [CrossRef]
- Tanaka, K.; Demoto, Y.; Ouchi, J.; Inoue, M. Strength property of densified SUGI adopted as material of connector. In Proceedings of the 11th World Conference on Timber Engineering (WCTE 2010), Trentino, Italy, 20–24 June 2010; pp. 1696–1701. [Google Scholar]
- Malaga-Toboła, U.; Łapka, M.; Tabor, S.; Niesłony, A.; Findura, P. Influence of wood anisotropy on its mechanical properties in relation to the scale effect. Int. Agrophys. 2019, 33, 337–345. [Google Scholar] [CrossRef]
- Burawska-Kupniewska, I.; Krzosek, S.; Mańkowski, P. Efficiency of Visual and Machine Strength Grading of Sawn Timber with Respect to Log Type. Forests 2021, 12, 1467. [Google Scholar] [CrossRef]
- EN 338; Timber Structures—Strength Classes. European Committee for Standardisation: Brussels, Belgium, 2016.
- Nilsson, J.; Johansson, J.; Kifetew, G.; Sandberg, D. Shape stability of modified engineering wood product subjected to moisture variation. Wood Mater. Sci. Eng. 2011, 6, 42–49. [Google Scholar] [CrossRef]
- Schrepfer, V.; Schweingruber, F.H. Anatomical Structures in Reshaped Press-Dried Wood. Holzforschung 1998, 52, 615–622. [Google Scholar] [CrossRef]
- Kamke, F.A.; Sizemore, H. Viscoelastic Thermal Compression of Wood. U.S. Patent 7,404,422 B2, 29 July 2008. [Google Scholar]
C Class of Graded Sawn Timber Determined before Densification | Average Density before Densification | Average Density after Densification | Density Increase |
---|---|---|---|
[kg/m3] | [kg/m3] | [%] | |
C18 | 518 (54) | 583 (62) | 13 |
C24 | 506 (31) | 573 (40) | 13 |
C30 | 559 (25) | 639 (33) | 14 |
C35 | 600 (28) | 679 (30) | 13 |
C40 | 675 (19) | 720 (30) | 7 |
ALL | 547 (48) | 621 (48) | 14 |
C Class of Graded Sawn Timber Determined after Densification | Average Density after Densifiction |
---|---|
[kg/m3] | |
C18 | 652 |
C24 | 550 |
C30 | 586 |
C35 | 639 |
C40 | 652 |
ALL | 621 |
C Class of Graded Sawn Timber Determined before Densification | Average Dynamic Modulus of Elasticity before Densification | Average Dynamic Modulus of Elasticity after Densification | Modulus of Elasticity Increase |
---|---|---|---|
[MPa] | [MPa] | [%] | |
C18 | 8913 (575) | 10,128 (1179) | 14 |
C24 | 11,626 (990) | 13,030 (1355) | 12 |
C30 | 14,286 (871) | 16,000 (1268) | 12 |
C35 | 16,690 (872) | 18,346 (952) | 10 |
C40 | 18,385 (693) | 18,602 (1523) | 1 |
ALL | 13,586 (2495) | 15,131 (2494) | 11 |
C Class of Graded Sawn Timber Determined after Densification | Average Dynamic Modulus of Elasticity MOE_dyn after Densification |
---|---|
[MPa] | |
C18 | 9127 |
C24 | 11,304 |
C30 | 13,570 |
C35 | 16,187 |
C40 | 18,555 |
ALL | 15,131 |
Modification | Class (before Densification) | Density [kg/m3] | Homogeneous Groups | MOE [MPa] | Homogeneous Groups |
---|---|---|---|---|---|
NM | C18 | 518 | a | 8913 | A |
TMD | 583 | d, c, d | 10,128 | B | |
NM | C24 | 506 | a | 11,626 | C |
TMD | 573 | c | 13,030 | D | |
NM | C30 | 559 | b | 14,286 | E |
TMD | 639 | e | 16,000 | F | |
NM | C35 | 599 | d | 16,863 | G |
TMD | 681 | f | 18,346 | H | |
NM | C40 | 675 | e, f | 18,602 | G, H |
TMD | 727 | f | 18,864 | H |
Source of Variance | Density | MOE | ||
---|---|---|---|---|
p | P (%) | P | P (%) | |
densification | 0.000000 | 9.2 | 0.000000 | 0.7 |
initial class | 0.000000 | 54.1 | 0.000000 | 81.5 |
Densification × initial class | 0.047054 | 0.5 | 0.101145 | 0.2 |
Error | 36.2 | 17.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grześkiewicz, M.; Krzosek, S.; Burawska, I.; Borysiuk, P.; Mańkowski, P. Influence of Thermo-Mechanical Densification (TMD) on the Properties of Structural Sawn Timber (Pinus sylvestris L.). Forests 2023, 14, 231. https://doi.org/10.3390/f14020231
Grześkiewicz M, Krzosek S, Burawska I, Borysiuk P, Mańkowski P. Influence of Thermo-Mechanical Densification (TMD) on the Properties of Structural Sawn Timber (Pinus sylvestris L.). Forests. 2023; 14(2):231. https://doi.org/10.3390/f14020231
Chicago/Turabian StyleGrześkiewicz, Marek, Sławomir Krzosek, Izabela Burawska, Piotr Borysiuk, and Piotr Mańkowski. 2023. "Influence of Thermo-Mechanical Densification (TMD) on the Properties of Structural Sawn Timber (Pinus sylvestris L.)" Forests 14, no. 2: 231. https://doi.org/10.3390/f14020231
APA StyleGrześkiewicz, M., Krzosek, S., Burawska, I., Borysiuk, P., & Mańkowski, P. (2023). Influence of Thermo-Mechanical Densification (TMD) on the Properties of Structural Sawn Timber (Pinus sylvestris L.). Forests, 14(2), 231. https://doi.org/10.3390/f14020231