Stable Isotopes Reveal the Effect of Canopy and Litter Layer Interception on Water Recharge in a Subtropical Manmade Forest of Southwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Collection and Analysis
3. Results and Discussion
3.1. Effect of Canopy Interception Revealed by RF-TF Isotopic Comparison
3.2. Effect of Litter Layer Interception Revealed by TF-LF Isotopic Comparison
3.3. Relationship between Interception Effect and Characteristics of Precipitation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Hu, K.X.; Awange, J.L.; Kuhn, M.; Saleem, A. Spatio-temporal groundwater variations associated with climatic and anthropogenic impacts in South-West Western Australia. Sci. Total Environ. 2019, 696, 133599. [Google Scholar] [CrossRef] [PubMed]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. In Technical Paper of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2008; ISBN 9789291691234. [Google Scholar]
- Ibrahim, M.F.M.; Faisal, A.; Shehata, S. Calcium Chloride Alleviates Water Stress in Sunflower Plants Through Modifying Some Physio-Biochemical Parameters. J. Agric. Environ. Sci. 2016, 16, 677–693. [Google Scholar]
- Ibrahim, M.F.M.; Ibrahim, H.A.; Abd El-Gawad, H.G. Folic acid as a protective agent in snap bean plants under water deficit conditions. J. Hortic. Sci. Biotechnol. 2021, 96, 94–109. [Google Scholar] [CrossRef]
- Rajmohan, N.; Masoud, M.H.Z.; Niyazi, B.A.M. Impact of evaporation on groundwater salinity in the arid coastal aquifer, Western Saudi Arabia. Catena 2021, 196, 104864. [Google Scholar] [CrossRef]
- Shi-Rong, L.; Peng-Sen, S.; Yuan-Guang, W. Comparative Analysis of Hydrological Functions of Major Forest Ecosystems in China. Chin. J. Plant Ecol. 2003, 27, 16–22. [Google Scholar] [CrossRef]
- Lin, M.; Sadeghi, S.M.M.; Van Stan, J.T. Partitioning of rainfall and sprinkler-irrigation by crop canopies: A global review and evaluation of available research. Hydrology 2020, 7, 76. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Gordon, D.A.; Van Stan, J.T. A global synthesis of throughfall and stemflow hydrometeorology. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 48–69. ISBN 9783030297022. [Google Scholar]
- Dunkerley, D. A review of the effects of throughfall and stemflow on soil properties and soil erosion. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 182–213. ISBN 9783030297022. [Google Scholar]
- Xiao, Q.; McPherson, E.G.; Ustin, S.L.; Grismer, M.E.; Simpson, J.R. Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol. Process. 2000, 14, 763–784. [Google Scholar] [CrossRef]
- Nearing, M.A. Soil Erosion and Conservation. In Environmental Modelling: Finding Simplicity in Complexity, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 365–378. ISBN 9780470749111. [Google Scholar]
- Allen, S.T.; Keim, R.F.; Barnard, H.R.; McDonnell, J.J.; Renée Brooks, J. The role of stable isotopes in understanding rainfall interception processes: A review. WIREs Water 2017, 4, e1187. [Google Scholar] [CrossRef]
- Li, X.; Niu, J.; Xie, B. Study on hydrological functions of litter layers in North China. PLoS ONE 2013, 8, 70328. [Google Scholar] [CrossRef]
- Zavala, L.M.; Jordán, A.; Gil, J.; Bellinfante, N.; Pain, C. Intact ash and charred litter reduces susceptibility to rain splash erosion post-wildfire. Earth Surf. Process. Landf. 2009, 34, 1522–1532. [Google Scholar] [CrossRef]
- Wang, M.C.; Liu, C.P.; Sheu, B.H. Characterization of organic matter in rainfall, throughfall, stemflow, and streamwater from three subtropical forest ecosystems. J. Hydrol. 2004, 289, 275–285. [Google Scholar] [CrossRef]
- Savenije, H.H.G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 2004, 18, 1507–1511. [Google Scholar] [CrossRef]
- Barbieri, M. Isotopes in Hydrology and Hydrogeology. Water 2019, 11, 291. [Google Scholar] [CrossRef]
- Krishan, G.; Rao, M.S.; Vashisht, R.; Chaudhary, A.; Singh, J.; Kumar, A. Isotopic Assessment of Groundwater Salinity: A Case Study of the Southwest (SW) Region of Punjab, India. Water 2022, 14, 133. [Google Scholar] [CrossRef]
- Eissa, M.; Ali, M.; Zaghlool, E.; Stash, O.S. Hydrochemical and stable isotopes indicators for detecting sources of groundwater contamination close to Bahr El-Baqar drain, eastern Nile Delta, Egypt. Water Sci. 2019, 33, 54–64. [Google Scholar] [CrossRef]
- Eissa, M.; Shawky, H.; Samy, A.; Khalil, M.; El Malky, M. Geochemical and Isotopic Evidence of Groundwater Salinization Processes in El Dabaa Area, Northwestern Coast, Egypt. Geosciences 2018, 8, 392. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K.; Tomun, N. Application of Stable Isotopic Compositions of Rainfall Runoff for Evaporation Estimation in Thailand Mekong River Basin. Water 2022, 14, 2803. [Google Scholar] [CrossRef]
- Krishan, G.; Kumar, B.; Sudarsan, N.; Rao, M.S.; Ghosh, N.C.; Taloor, A.K.; Bhattacharya, P.; Singh, S.; Kumar, C.P.; Sharma, A.; et al. Isotopes (δ18O, δD and 3H) variations in groundwater with emphasis on salinization in the state of Punjab, India. Sci. Total Environ. 2021, 789, 148051. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Li, X.; Qi, J.; Zhang, Q.; Guo, J.; Yu, L.; Zhao, R. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water 2018, 10, 80. [Google Scholar] [CrossRef]
- Botsyun, S.; Sepulchre, P.; Risi, C.; Donnadieu, Y. Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O. Clim. Past 2016, 12, 1401–1420. [Google Scholar] [CrossRef]
- Botsyun, S.; Ehlers, T.A.; Mutz, S.G.; Methner, K.; Krsnik, E.; Mulch, A. Opportunities and Challenges for Paleoaltimetry in “Small” Orogens: Insights From the European Alps. Geophys. Res. Lett. 2020, 47, e2019GL086046. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S. Isotopic temporal and spatial variations of tropical rivers in Thailand reflect monsoon precipitation signals. Hydrol. Process. 2021, 35, e14068. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Kamdee, K.; Putthividhya, A.; Tanoue, M. Spatial and temporal distributions of stable isotopes in precipitation over Thailand. Hydrol. Process. 2021, 35, e13995. [Google Scholar] [CrossRef]
- Heydarizad, M.; Minaei, M.; Ichiyanagi, K.; Sorí, R. The effects of local and regional parameters on the δ18O and δ2H values of precipitation and surface water resources in the Middle East. J. Hydrol. 2021, 600, 126485. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Chen, K.; Hu, Y.; Zhou, J.; Liu, Y.; Mei, J. Stable Isotope Characteristics for Precipitation Events and Their Responses to Moisture and Environmental Changes During the Summer Monsoon Period in Southwestern China. Polish J. Environ. Stud. 2020, 29, 2429–2445. [Google Scholar] [CrossRef]
- Heydarizad, M.; Gimeno, L.; Sorí, R.; Minaei, F.; Mayvan, J.E. The Stable Isotope Characteristics of Precipitation in the Middle East Highlighting the Link between the Köppen Climate Classifications and the δ18O and δ2H Values of Precipitation. Water 2021, 13, 2397. [Google Scholar] [CrossRef]
- Xu, X.; Guan, H.; Deng, Z. Isotopic composition of throughfall in pine plantation and native eucalyptus forest in South Australia. J. Hydrol. 2014, 514, 150–157. [Google Scholar] [CrossRef]
- Allen, S.T.; Keim, R.F.; McDonnell, J.J. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales. J. Hydrol. 2015, 522, 58–66. [Google Scholar] [CrossRef]
- Goldsmith, G.R.; Allen, S.T.; Braun, S.; Engbersen, N.; González-Quijano, C.R.; Kirchner, J.W.; Siegwolf, R.T.W. Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest. Ecohydrology 2019, 12, 2059. [Google Scholar] [CrossRef]
- Lee, J.E.; Fung, I. “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Process. 2008, 22, 1–8. [Google Scholar] [CrossRef]
Sampling Date | Event Number | TF-RF Isotopic Difference (‰) | LF-TF Isotopic Difference (‰) | Precipitation Amount (mm) | Precipitation Intensity (mm/h) | ||||
---|---|---|---|---|---|---|---|---|---|
ΔD | Δδ18O | Δd-Excess | ΔD | Δδ18O | Δd-Excess | ||||
2019/7/3 | 2 | −1.02 | −0.60 | 3.76 | - | - | - | 2.7 | 2.31 |
2019/7/3 | 3 | 1.97 | 0.67 | −3.38 | - | - | - | 2.6 | 1.28 |
2019/7/4 | 1 | −0.92 | 0.40 | −4.08 | - | - | - | 15.4 | 1.60 |
2019/7/6 | 1 | 0.11 | 0.71 | −5.55 | - | - | - | 0.5 | 0.50 |
2019/7/7 | 2 | 1.47 | −0.01 | 1.55 | - | - | - | 13.8 | 2.24 |
2019/7/9 | 1 | 0.75 | 0.37 | −2.20 | - | - | - | 31.4 | 5.32 |
2019/7/10 | 1 | 0.18 | −0.30 | 2.59 | - | - | - | 2.4 | 1.11 |
2019/7/11 | 1 | 0.59 | −0.05 | 0.97 | - | - | - | 62.2 | 8.20 |
2019/7/11 | 2 | 0.68 | −0.04 | 0.97 | - | - | - | 8.5 | 3.21 |
2019/7/14 | 1 | −0.96 | −0.44 | 2.54 | - | - | - | - | - |
2019/7/15 | 1 | 0.54 | 0.21 | −1.15 | - | - | - | - | - |
2019/7/16 | 1 | 1.29 | 0.36 | −1.61 | - | - | - | - | - |
2019/7/21 | 1 | 1.35 | 0.10 | 0.56 | - | - | - | 2.9 | 0.97 |
2019/7/22 | 1 | −2.31 | −0.28 | −0.09 | - | - | - | 41.5 | 7.18 |
2020/7/16 | 1 | 0.98 | 0.19 | −0.51 | - | - | - | 36.8 | 3.07 |
2020/7/17 | 1 | 0.60 | 0.13 | −0.45 | - | - | - | 2.6 | 0.95 |
2020/7/18 | 1 | 2.14 | −0.37 | 5.07 | - | - | - | 2.8 | 3.73 |
2020/7/21 | 1 | −1.04 | −0.15 | 0.18 | - | - | - | 5.0 | 2.00 |
2020/7/22 | 1 | 3.42 | 0.29 | 1.10 | - | - | - | 2.6 | 0.61 |
2020/7/29 | 1 | −0.28 | −0.10 | 0.52 | - | - | - | - | - |
2020/7/29 | 2 | 0.17 | −0.02 | 0.32 | - | - | - | - | - |
2020/7/29 | 3 | −0.83 | −0.24 | 1.07 | - | - | - | 2.6 | 1.30 |
2020/7/30 | 1 | −0.13 | −0.17 | 1.24 | - | - | - | 10.7 | - |
2020/7/31 | 1 | 0.16 | −0.08 | 0.79 | - | - | - | 3.8 | - |
2020/7/31 | 2 | 3.38 | 0.23 | 1.57 | - | - | - | 0.2 | 0.30 |
2020/8/1 | 1 | 1.31 | −0.02 | 1.50 | - | - | - | - | - |
2020/8/2 | 1 | −0.64 | −0.03 | −0.43 | - | - | - | 1.8 | 0.32 |
2020/8/3 | 1 | −0.30 | −0.02 | −0.18 | - | - | - | 2.0 | 4.00 |
2020/8/4 | 1 | 0.95 | 0.15 | −0.27 | - | - | - | 6.6 | 1.69 |
2020/8/7 | 1 | 1.53 | 0.05 | 1.09 | - | - | - | - | - |
2020/8/7 | 2 | −0.14 | −0.22 | 1.61 | - | - | - | 0.4 | 0.15 |
2020/8/11 | 1 | 0.19 | 0.02 | 0.06 | - | - | - | 20.4 | 3.40 |
2020/8/11 | 2 | −1.70 | 0.01 | −1.82 | - | - | - | 12.8 | 2.74 |
2020/8/11 | 3 | −2.92 | −0.31 | −0.40 | - | - | - | 43.8 | 3.13 |
2020/8/12 | 1 | 1.92 | 0.29 | −0.36 | - | - | - | 4.8 | 1.20 |
2020/8/13 | 1 | −1.00 | −0.26 | 1.08 | - | - | - | 1.8 | 1.44 |
2020/8/13 | 2 | −1.41 | −0.33 | 1.22 | - | - | - | 2.5 | - |
2020/8/14 | 1 | −0.41 | 0.22 | −2.14 | - | - | - | 63.0 | 7.27 |
2020/8/16 | 1 | −1.37 | −0.15 | −0.16 | - | - | - | 115.4 | 7.54 |
2020/8/16 | 2 | −2.41 | −0.55 | 1.97 | - | - | - | 0.4 | 0.53 |
2020/8/16 | 3 | 1.17 | 0.15 | −0.02 | - | - | - | 78.2 | 7.11 |
2020/8/23 | 1 | −1.49 | −0.59 | 3.21 | - | - | - | - | - |
2020/8/28 | 1 | 0.40 | 0.10 | −0.43 | - | - | - | 9.6 | 12.80 |
2020/8/29 | 1 | −1.54 | −0.72 | 4.19 | - | - | - | 2.8 | 1.40 |
2020/8/30 | 2 | −0.91 | −0.17 | 0.48 | - | - | - | 0.4 | 0.34 |
2020/8/31 | 1 | −0.01 | 0.01 | −0.09 | - | - | - | 36.4 | 3.64 |
2021/7/2 | 1 | −0.71 | −0.46 | 2.98 | −1.71 | −0.03 | −1.49 | 23.4 | 9.96 |
2021/7/8 | 1 | −1.64 | −0.42 | 1.71 | 0.46 | 0.11 | −0.43 | 4.0 | 1.33 |
2021/7/9 | 1 | −0.66 | −0.13 | 0.35 | −1.79 | −0.33 | 0.81 | - | - |
2021/7/10 | 1 | −2.69 | −0.67 | 2.67 | 2.62 | 0.93 | −4.83 | 5.4 | 0.68 |
2021/7/11 | 1 | −0.97 | −0.49 | 2.91 | 2.34 | 0.97 | −5.45 | 1.6 | 0.21 |
2021/7/15 | 1 | 5.33 | 0.49 | 1.44 | −28.32 | −3.41 | −1.01 | 43.2 | 2.50 |
2021/7/16 | 1 | 5.00 | 0.73 | −0.84 | −6.14 | −0.59 | −1.43 | 0.8 | 2.18 |
2021/7/18 | 1 | 8.41 | 0.98 | 0.53 | 3.05 | 0.28 | 0.77 | 3.6 | 0.38 |
2021/7/19 | 1 | −11.20 | −1.60 | 1.64 | 14.44 | 2.44 | −5.08 | 1.0 | 3.16 |
2021/7/21 | 1 | 0.26 | 0.14 | −0.88 | 0.10 | −0.12 | 1.03 | 18.2 | 2.21 |
2021/7/24 | 1 | 0.03 | −0.15 | 1.26 | 2.63 | 0.62 | −2.31 | 29.0 | 6.06 |
2021/7/26 | 1 | −0.53 | 0.20 | −2.16 | −1.49 | −0.78 | 4.77 | - | - |
2021/8/5 | 1 | 2.05 | 0.06 | 1.59 | 1.84 | 0.79 | −4.45 | 22.6 | 2.83 |
2021/8/8 | 1 | 0.89 | 0.00 | 0.87 | 1.79 | 0.11 | 0.87 | 2.4 | 2.40 |
2021/8/10 | 1 | −1.01 | −0.64 | 4.11 | 5.34 | 1.12 | −3.64 | - | - |
2021/8/11 | 1 | 4.40 | 0.60 | −0.40 | −0.66 | −0.04 | −0.33 | 7.9 | 5.27 |
2021/8/12 | 1 | −0.23 | 0.00 | −0.23 | −0.28 | 0.00 | −0.26 | - | - |
2021/8/12 | 2 | −0.15 | −0.18 | 1.27 | −0.11 | 0.12 | −1.06 | - | - |
2021/8/12 | 3 | 4.58 | 0.40 | 1.37 | 3.89 | 0.46 | 0.20 | 2.2 | 0.80 |
2021/8/13 | 1 | 2.03 | 0.47 | −1.75 | 1.18 | 0.27 | −1.01 | 5.9 | 2.95 |
2021/8/15 | 1 | 0.83 | −0.18 | 2.26 | −0.83 | −0.26 | 1.21 | 5.6 | 2.24 |
2021/8/15 | 2 | 0.77 | 0.13 | −0.23 | 0.69 | 0.16 | −0.59 | 4.8 | 0.45 |
2021/8/17 | 1 | 0.85 | 0.14 | −0.27 | 0.13 | 0.04 | −0.18 | 4.6 | 0.84 |
2021/8/17 | 2 | −7.14 | −1.04 | 1.17 | 6.28 | 1.39 | −4.87 | 0.2 | - |
2021/8/17 | 3 | −4.17 | −0.59 | 0.57 | −5.76 | −0.69 | −0.22 | - | - |
2021/8/18 | 1 | −2.93 | −0.70 | 2.65 | 1.40 | 0.03 | 1.13 | 18.4 | 2.94 |
2021/8/19 | 1 | 16.00 | 2.16 | −1.32 | −1.06 | 0.22 | −2.81 | 1.0 | 3.53 |
2021/8/19 | 2 | −0.26 | −0.14 | 0.89 | 1.67 | −0.23 | 3.50 | 2.4 | 1.62 |
2021/8/21 | 1 | 1.32 | 0.33 | −1.33 | 0.21 | −0.05 | 0.65 | 0.8 | 1.45 |
2021/8/22 | 1 | −0.73 | −0.14 | 0.43 | −0.65 | 0.06 | −1.11 | 1.0 | 1.94 |
2021/8/22 | 2 | 1.42 | 0.00 | 1.45 | 1.80 | 0.32 | −0.73 | 17.0 | 1.77 |
2021/8/25 | 1 | 7.11 | 0.63 | 2.05 | −13.20 | −1.65 | −0.03 | 35.2 | 2.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, C.; Liu, G.; Luo, J. Stable Isotopes Reveal the Effect of Canopy and Litter Layer Interception on Water Recharge in a Subtropical Manmade Forest of Southwest China. Forests 2023, 14, 129. https://doi.org/10.3390/f14010129
Xia C, Liu G, Luo J. Stable Isotopes Reveal the Effect of Canopy and Litter Layer Interception on Water Recharge in a Subtropical Manmade Forest of Southwest China. Forests. 2023; 14(1):129. https://doi.org/10.3390/f14010129
Chicago/Turabian StyleXia, Chengcheng, Guodong Liu, and Jian Luo. 2023. "Stable Isotopes Reveal the Effect of Canopy and Litter Layer Interception on Water Recharge in a Subtropical Manmade Forest of Southwest China" Forests 14, no. 1: 129. https://doi.org/10.3390/f14010129
APA StyleXia, C., Liu, G., & Luo, J. (2023). Stable Isotopes Reveal the Effect of Canopy and Litter Layer Interception on Water Recharge in a Subtropical Manmade Forest of Southwest China. Forests, 14(1), 129. https://doi.org/10.3390/f14010129