A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Field Sampling
2.2. Experimental Procedure
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Vessel Anatomical Traits of Non-Native and Native Forbs
3.2. Correlations of the Major Hydraulic Traits of Non-Native and Native Forbs
3.3. Variation in Vessel Anatomical Traits of Non-Native and Native Forbs along a Precipitation Gradient
4. Discussion
4.1. Differences in Xylem Features and Plasticity between Native and Non-Native Forbs
4.2. Differences in the Relationship between Vessel Traits of Non-Native and Native Forbs
4.3. Response Differences of Vessel Traits of Non-Native and Native Forbs to Precipitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zavaleta, E.S.; Shaw, M.R.; Chiariello, N.R.; Thomas, B.D.; Cleland, E.E.; Field, C.B.; Mooney, H.A. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 2003, 73, 585–604. [Google Scholar] [CrossRef]
- Easterling, D.R. Climate extremes: Observations, modelling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Brookshire, E.N.J.; Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 2015, 6, 7148. [Google Scholar] [CrossRef]
- Liu, H.Y.; Mi, Z.R.; Lin, L.; Wang, Y.H.; Zhang, Z.H.; Zhang, F.W.; Wang, H.; Liu, L.L.; Zhu, B.; Cao, G.M.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef]
- Knapp, A.K.; Briggs, J.M.; Koelliker, J.K. Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 2001, 4, 19–28. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Zhu, W.Q.; Schwartz, M.W.; Ganjurjav, H.; Wan, Y.F.; Qin, X.B.; Ma, X.; Williamson, M.A.; Li, Y. Climatic change controls productivity variation in global grasslands. Sci. Rep. 2016, 6, 26958. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P.; Brown, V.K.; Thompson, K.; Masters, G.J.; Hillier, S.H.; Clarke, I.P.; Askew, A.P.; Corker, D.; Kielty, J.P. The response of two contrasting limestone grasslands to simulated climate change. Science 2000, 289, 762–765. [Google Scholar] [CrossRef]
- White, S.R.; Carlyle, C.N.; Fraser, L.H.; Cahill, J.F. Climate change experiments in temperate grasslands: Synthesis and future directions. Biol. Lett. 2012, 8, 484–487. [Google Scholar] [CrossRef]
- Ma, W.H.; Fang, J.Y.; Yang, Y.H.; Mohammat, A. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef]
- Ma, W.H.; Liu, Z.L.; Wang, Z.H.; Wang, W.; Liang, C.Z.; Tang, Y.H.; He, J.S.; Fang, J.Y. Climate change alters interannual variation of grassland aboveground productivity: Evidence from a 22-year measurement series in the Inner Mongolian grassland. J. Plant Res. 2010, 123, 509–517. [Google Scholar] [CrossRef]
- Büntgen, U.; Psomas, A.; Schweingruber, F.H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: Applications of the Xylem Database to vegetation science. J. Veg. Sci. 2014, 25, 967–977. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Fonti, P.; Cherubini, P.; Martín-Benito, D.; Chaar, H.; Caellas, I. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol. 2012, 32, 401–413. [Google Scholar] [CrossRef]
- Martínez-Sancho, E.; Dorado-Lián, I.; Heinrich, I.; Helle, G.; Menzel, A. Xylem adjustment of sessile oak at its southern distribution limits. Tree Physiol. 2017, 37, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Pérez-de-Lis, G.; Rozas, V.; Vázquez-Ruiz, R.A.; García-González, I. Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agric. For. Meteorol. 2018, 248, 205–214. [Google Scholar] [CrossRef]
- Hallinger, M.; Manthey, M.; Wilmking, M. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol. 2010, 186, 890–899. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Hellmann, L.; Tegel, W.; Braun, S.; Nievergelt, D.; Büntgen, U. Evaluating the wood anatomical and dendroecological potential of Arctic dwarf shrubs communities. IAWA J. 2013, 34, 485–497. [Google Scholar] [CrossRef]
- Buras, A.; Lehejček, J.; Michalová, Z.; Morrissey, R.C.; Svoboda, M.; Wilmking, M. Shrubs shed light on 20th century Greenland Ice Sheet melting. Boreas 2017, 46, 667–677. [Google Scholar] [CrossRef]
- Unterholzner, L.; Carrer, M.; Bär, A.; Beikircher, B.; Dämon, B.; Losso, A.; Prendin, A.L.; Mayr, S. Juniperus communis populations exhibit low variability in hydraulic safety and efficiency. Tree Physiol. 2020, 40, 1668–1679. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, E.C.; Vázquez-García, J.A.; García-González, I.; Alcántara-Ayala, O.; Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 2020, 13, 331–340. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, E.C.; Valdez-Nieto, J.A.; Vázquez-García, J.A.; Dieringer, G.; Luna-Vega, I. Plastic responses of Magnolia schiedeana Schltdl., a relict-endangered Mexican Cloud Forest tree, to climatic events: Evidences from leaf venation and wood vessel anatomy. Forests 2020, 11, 737. [Google Scholar] [CrossRef]
- Zhang, H.X.; Yuan, F.H.; Wu, J.B.; Jin, C.J.; Pivovaroff, A.L.; Tian, J.Y.; Li, W.B.; Guan, D.X.; Wang, A.Z.; McDowell, N.G. Responses of functional traits to seven-year nitrogen addition in two tree species: Coordination of hydraulics, gas exchange and carbon reserves. Tree Physiol. 2021, 41, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Ganthaler, A.; Mayr, S. Subalpine dwarf shrubs differ in vulnerability to xylem cavitation: An innovative staining approach enables new insights. Physiol. Plantarum 2021, 172, 2011–2021. [Google Scholar] [CrossRef] [PubMed]
- García-Cervigón, A.I.; García-López, M.A.; Pistón, N.; Pugnaire, F.I.; Olano, J.M. Co-ordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant. Ann. Bot. 2021, 127, 919–929. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Dietz, H. Annual rings in the xylem of dwarf shrubs and perennial dicotyledonous herbs. Dendrochronologia 2001, 19, 115–126. [Google Scholar]
- Olano, J.M.; Almería, I.; Eugenio, M.; von Arx, G.; Tjoelker, M. Under pressure: How a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 2013, 27, 1295–1303. [Google Scholar] [CrossRef]
- Dee, J.R.; Palmer, M.W. Application of herb-chronology: Annual fertilization and climate reveal annual ring signatures within the roots of U.S. tallgrass prairie plants. Botany 2016, 94, 277–288. [Google Scholar] [CrossRef]
- Hummel, I.; Vile, D.; Violle, C.; Devaux, J.; Ricci, B.; Blanchard, A.; Garnier, E.; Roumet, C. Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol. 2007, 173, 313–321. [Google Scholar] [CrossRef]
- Dietz, H.; Fattorini, M. Comparative analysis of growth rings in perennial forbs grown in an alpine restoration experiment. Ann. Bot. 2002, 90, 663–668. [Google Scholar] [CrossRef]
- Dietz, H.; von Arx, G.; Dietz, S. Growth increment patterns in the roots of two alpine forbs growing in the center and at the periphery of a snowbank. Arct. Antarct. Alp. Res. 2004, 36, 591–597. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Büntgen, U. What is ‘wood’—An anatomical re-definition. Dendrochronologia 2013, 31, 187–191. [Google Scholar] [CrossRef]
- Dietz, H.; von Arx, G. Climatic fluctuation causes large-scale synchronous variation in radial root increments of perennial forbs. Ecology 2005, 86, 327–333. [Google Scholar] [CrossRef]
- Dee, J.R.; Stambaugh, M.C. A new approach towards climate monitoring in Rocky Mountain alpine plant communities: A case study using herb-chronology and Penstemon whippleanus. Arct. Antarct. Alp. Res. 2019, 51, 84–95. [Google Scholar] [CrossRef]
- Fonti, P.; von Arx, G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings research. New Phytol. 2010, 185, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Venegas-González, A.; Chagas, M.P.; Anholetto Júnior, C.R.; Alvares, C.A.; Roig, F.A.; Tomazello Filho, M. Sensitivity of tree ring growth to local and large-scale climate variability in a region of southeastern Brazil. Theor. Appl. Climatol. 2016, 123, 233–245. [Google Scholar] [CrossRef]
- von Arx, G.; Archer, S.R.; Hughes, M.K. Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Ann. Bot. 2012, 109, 1091–1100. [Google Scholar] [CrossRef]
- Castagneri, D.; Carrer, M.; Regev, L.; Boaretto, E. Precipitation variability differently affects radial growth, xylem traits and ring porosity of three Mediterranean oak species at xeric and mesic sites. Sci. Total Environ. 2020, 699, 134285. [Google Scholar] [CrossRef]
- Tyree, M.T.; Ewers, F.W. The hydraulic architecture of trees and other woody plants. New Phytol. 1991, 119, 345–360. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in thevulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- McDowell, N.G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef]
- Schmitz, N.; Jansen, S.; Verheyden, A.; Kairo, J.G.; Beeckman, H.; Koedam, N. Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi Bay, Kenya. Ann. Bot. 2007, 100, 271–281. [Google Scholar] [CrossRef]
- Cochard, H.; Tyree, M.T. Xylem dysfunction in Quercus: Vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol. 1990, 6, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K.A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.S.; Meinzer, F.C.; Mcculloh, K.A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 2008, 31, 632–645. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Jacobsen, A.L.; Pratt, R.B. Xylem function of arid-land shrubs from California, USA: An ecological and evolutionary analysis. Plant Cell Environ. 2009, 32, 1324–1333. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S.; Wheeler, J.K.; Castro, L. Scaling of angiosperm xylem structure with safety and eficiency. Tree Physiol. 2006, 26, 89–701. [Google Scholar] [CrossRef]
- Kołodziejek, J.; Glińska, S.; Michlewska, S. Seasonal leaf dimorphism in Potentilla argentea L. var. tenuiloba (Jord.) Sw. (Rosaceae). Acta Bot. Croat. 2015, 74, 53–70. [Google Scholar] [CrossRef][Green Version]
- Munir, M.; Khan, M.A.; Ahmad, M.; Abbasi, A.M.; Zafar, M.; Khan, K.Y.; Tariq, K.; Tabassum, S.; Ahmed, S.N.; Habiba, U.; et al. Taxonomic potential of foliar epidermal anatomy among the wild culinary vegetables of Pakistan. J. Med. Plants Res. 2011, 5, 2857–2862. [Google Scholar]
- Liu, W.S.; Zheng, L.; Qi, D.H. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol. Evol. 2020, 10, 8166–8175. [Google Scholar] [CrossRef]
- Purnobasuki, H.; Nurhidayati, T.; Hariyanto, S.; Jadid, N. Data of root anatomical responses to periodic waterlogging stress of tobacco (Nicotiana tabacum) varieties. Data Brief 2018, 20, 2012–2016. [Google Scholar] [CrossRef]
- von Arx, G.; Dietz, H. Growth rings in the roots of temperate forbs are robust annual markers. Plant Biol. 2006, 8, 224–233. [Google Scholar] [CrossRef]
- Lewis, A.M.; Boose, E.R. Estimating volume flow rates through xylem conduits. Am. J. Bot. 1995, 82, 1112–1116. [Google Scholar] [CrossRef]
- Sperry, J.S.; Nichols, K.L. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of Northern Utah and Interior Alaska. Ecology 1994, 75, 1736–1752. [Google Scholar] [CrossRef]
- Ashton, P.M.S.; Olander, L.P.; Berlyn, G.P.; Thadani, R.; Cameron, I.R. Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Can. J. Bot. 1998, 76, 1180–1187. [Google Scholar]
- Kerkhoff, A.J.; Enquist, B.J. Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 2009, 257, 519–521. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhang, Q.B. Growth rings of roots in perennial forbs in Duolun Grassland, Inner Mongolia, China. J. Integr. Plant Biol. 2007, 49, 144–149. [Google Scholar] [CrossRef]
- Dietz, H.; Schweingruber, F.H. Annual rings in native and introduced forbs of lower Michigan, USA. Can. J. Bot. 2002, 80, 642–649. [Google Scholar] [CrossRef]
- Shi, S.L.; Li, Z.S.; Wang, H.; von Arx, G.; Lü, Y.H.; Wu, X.; Wang, X.C.; Liu, G.H.; Fu, B.J. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis. Sci. Rep. 2016, 6, 28435. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Bowman, D.; Nichols, S.; Delzon, S.; Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 2010, 188, 533–542. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hacke, U.W.; Wheeler, J.K. Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ. 2005, 28, 456–465. [Google Scholar] [CrossRef]
- Schmitz, N.; Verheyden, A.; Beeckman, H.; Kairo, J.G.; Koedam, N. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Ann. Bot. 2006, 98, 1321–1330. [Google Scholar] [CrossRef]
- Verheyden, A.; De Ridder, F.; Schmitz, N.; Beeckman, H.; Koedam, N. High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol. 2005, 167, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wei, W.; Chen, L.D.; Mo, B.R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Liu, B.X.; Shao, M.A. Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China. Agric. Water Manag. 2015, 159, 176–184. [Google Scholar] [CrossRef]
- Abrams, M.D.; Kubiske, M.E.; Mostoller, S.A. Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species. Ecology 1994, 75, 123–133. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Davidson, A. Adaptive phenotypic plasticity and plant water use. Funct. Plant Biol. 2010, 37, 117–127. [Google Scholar] [CrossRef]
- Zimmermann, M.H. Hydraulic architecture of some diffuse-porous trees. Can. J. Bot. 1978, 56, 2286–2295. [Google Scholar] [CrossRef]
- Yáñez-Espinosa, L.; Terrazas, T.; López-Mata, L. Effects of flooding on wood and bark anatomy of four species in a mangrove forest community. Trees 2001, 15, 91–97. [Google Scholar] [CrossRef]
- Cochard, H. Vulnerability of several conifers to air embolism. Tree Physiol. 1992, 11, 73–83. [Google Scholar] [CrossRef]
- Kavanagh, K.L.; Bond, B.J.; Aitken, S.N.; Gartner, B.L.; Knowe, S. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol. 1999, 19, 31–37. [Google Scholar] [CrossRef]
- Wilcox, K.R.; von Fischer, J.C.; Muscha, J.M.; Petersen, M.K.; Knapp, A.K. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Glob. Chang. Biol. 2015, 21, 335–344. [Google Scholar] [CrossRef]
- Pockman, W.T.; Sperry, J.S. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. Am. J. Bot. 2000, 89, 1287–1299. [Google Scholar] [CrossRef]
- García-Cervigón, A.I.; Olano, J.M.; von Arx, G.; Fajardo, A. Xylem adjusts to maintain efficiency across a steep precipitation gradient in two coexisting generalist species. Ann. Bot. 2018, 122, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Boughalleb, F.; Abdellaoui, R.; Ben-Brahim, N.; Neffati, M. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Cent. Eur. J. Biol. 2014, 9, 1215–1225. [Google Scholar] [CrossRef]
- Williams, A.L.; Wills, K.E.; Janes, J.K.; Schoor, J.; Newton, P.; Hovenden, M.J. Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytol. 2007, 176, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.J.; Liu, S.J.; Arzac, A.; Cooper, D.J.; Jin, Y.; Yuan, D.Y.; Zhu, Y.; Zhang, X.; Li, Z.S.; Zhang, Y.D.; et al. Different response of earlywood vessel features of Fraxinus mandshurica to rapid warming in warm-dry and cold-wet areas. Agric. For. Meteorol. 2021, 307, 108523. [Google Scholar] [CrossRef]
Site Code | Location (Latitude N, Longitude E) | Precipitation (mm) | Temperature (°C) | Elevation (m) | Species | Number of Samples |
---|---|---|---|---|---|---|
S1 | 37.10°, 108.22° | 445 | 7.80 | 1372 | MF, MS | 10 |
S2 | 36.65°, 108.32° | 500 | 8.20 | 1526 | MF, MS, ML, MR, MM, PT | 30 |
S3 | 44.27°, 116.53° | 282 | 1.39 | 1140 | MR, PT | 10 |
S4 | 43.55°, 116.67° | 321 | 1.51 | 1260 | MS | 5 |
S5 | 50.20°, 119.39° | 357 | −2.08 | 525 | MR | 5 |
S6 | 43.91°, 115.50° | 227 | 1.80 | 1131 | MR | 5 |
S7 | 45.14°, 121.53° | 404 | 5.76 | 275 | MR | 5 |
S8 | 36.98°, 107.85° | 430 | 6.80 | 1405 | PT, PC | 10 |
S9 | 44.37°, 116.11° | 253 | 2.58 | 938 | PT | 5 |
S11 | 43.55°, 116.67° | 320 | 1.52 | 1271 | PT, PA, PC | 15 |
S12 | 47.94°, 117.32° | 230 | 0.60 | 595 | PT | 5 |
S13 | 45.04°, 118.92° | 358 | 1.03 | 1015 | PT | 5 |
S14 | 48.52°, 119.74° | 360 | −1.31 | 749 | PT, PA | 10 |
Traits | Genera | |
---|---|---|
Medicago | Potentilla | |
NV | 0.430 | 0.295 |
VF (%) | 0.558 | 0.466 |
MVA (μm2) | 0.568 | 0.430 |
Kh (kg m MPa−1 s−1) | 0.684 | 0.697 |
Dh (μm) | 0.364 | 0.285 |
PI mean | 0.521 | 0.435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Li, Z.; Keyimu, M.; Chen, Y.; Gao, G.; Wang, C.; Wang, X. A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. Forests 2022, 13, 193. https://doi.org/10.3390/f13020193
Dong Y, Li Z, Keyimu M, Chen Y, Gao G, Wang C, Wang X. A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. Forests. 2022; 13(2):193. https://doi.org/10.3390/f13020193
Chicago/Turabian StyleDong, Yanjun, Zongshan Li, Maierdang Keyimu, Ying Chen, Guangyao Gao, Cong Wang, and Xiaochun Wang. 2022. "A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China" Forests 13, no. 2: 193. https://doi.org/10.3390/f13020193
APA StyleDong, Y., Li, Z., Keyimu, M., Chen, Y., Gao, G., Wang, C., & Wang, X. (2022). A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. Forests, 13(2), 193. https://doi.org/10.3390/f13020193