Microsites Influence the Light Response of Young Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site and Data Collection
2.2. Data Analysis
3. Results
3.1. Light Environment
3.2. Nutrient Status
3.3. Climate and Micrometeorological Conditions
3.4. Assimilation
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Bončìna, A.; Chauvin, C.; Drössler, L.; García-Güemes, C.; Heiri, C.; Kerr, G. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. For. Int. J. For. Res. 2014, 87, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Podrázský, V.; Remeš, J.; Sloup, R.; Pulkrab, K.; Novotná, S. Douglas-fir-Partial substitution for declining conifer timber supply-review of Czech data. Wood Res. 2016, 61, 525–530. [Google Scholar]
- Synek, M.; Vašíček, J.; Zeman, M. Outlook of logging perspectives in the Czech Republic for the period 2013–2032. J. For. Sci. 2014, 60, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Henin, J.-M.; Pollet, C.; Jourez, B.; Hébert, J. Impact of Tree Growth Rate on the Mechanical Properties of Douglas Fir Lumber in Belgium. Forests 2018, 9, 342. [Google Scholar] [CrossRef] [Green Version]
- Pollet, C.; Henin, J.-M.; Hébert, J.; Jourez, B. Effect of growth rate on the physical and mechanical properties of Douglas-fir in western Europe. Can. J. For. Res. 2017, 47, 1056–1065. [Google Scholar] [CrossRef]
- Hein, S.; Weiskittel, A.R.; Kohnle, U. Effect of wide spacing on tree growth, branch and sapwood properties of young Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in south-western Germany. Eur. J. For. Res. 2008, 127, 481–493. [Google Scholar] [CrossRef]
- Bergel, D. Douglasien-Ertragstafel für Nordwestdeutschland. In Ertragstafeln Wichtiger Baumarten; Schober, R., Ed.; J. D. Sauerländer’s Verlag, 3. neu bearbeitete und erweiterte Auflage: Frankfurt am Main, Germany, 1985. [Google Scholar]
- Begin, J. Productivite du Douglas vert (Pseudotsuga menziesii (Mirb) Franco var menziesii) en Relation avec des Characteristiques Stationnelles. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1991. [Google Scholar]
- Jasser, C. Douglasie in Oberösterreich—Möglichkeiten und Grenzen; Bundesforschungs-und Ausbildungszentrum für Wald, Naturgefahren und Landschaft: Wien, Austria, 2008; pp. 19–20. [Google Scholar]
- Riehl, G. Zum Waldbau der Douglasie in Nordwestdeutschland—Erfahrungen eines Praktikers. Forst Holz 2000, 55, 716–718. [Google Scholar]
- Englisch, M. Die Douglasie—Für und Wider aus Standortkundlicher Sicht; Bundesforschungs-und Ausbildungszentrum für Wald, Naturgefahren und Landschaft: Wien, Austria, 2008; pp. 6–8. [Google Scholar]
- Meyer, M.; Ulrich, B. Auswirkungen einer Kalkung auf Böden mit Mangantoxizität bei Douglasienbeständen auf Buntsandstein in der Nordeifel. Forst Holz 1900, 45, 493–498. [Google Scholar]
- Albert, M.; Hansen, J.; Nagel, J.; Schmidt, M.; Spellmann, H. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change. For. Ecosyst. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, L.C. The Structure of Natural Douglas-Fir Forests in Western Washington and Western Oregon; Agricultural University Wageningen Papers; Agricultural University Wageningen: Wageningen, The Netherlands, 1988; Volume 88, p. 47. [Google Scholar]
- Knoerzer, D.; Reif, A. Die Naturverjüngung der Douglasie im Bereich des Stadtwaldes von Freiburg. Afz-Der Wald 1996, 51, 1117–1120. [Google Scholar]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Chang. Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef]
- Lévesque, M.; Rigling, A.; Bugmann, H.; Weber, P.; Brang, P. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric. For. Meteorol. 2014, 197, 1–12. [Google Scholar] [CrossRef]
- Zeidler, A.; Borůvka, V.; Schönfelder, O. Comparison of Wood Quality of Douglas Fir and Spruce from Afforested Agricultural Land and Permanent Forest Land in the Czech Republic. Forests 2018, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Sauter, U. Characteristics and potential of Douglas fir (Pseudotsuga Menziesii (Mirb) Franco); Forest Research Institute, Department of Forest Utilisation: Baden-Wurtttenberg, Germany, 2008; p. 38. [Google Scholar]
- Breznikar, A. Mednarodno provenienčno preučevanje duglazije (Pseudotsuga menziesii (Mirb) Franco) v Sloveniji- International Provenance Research on Douglas fir (Pseudotsuga Menziesii (Mirb.) Franco) in Slovenia; University of Ljubljana: Ljubljana, Slovenia, 1991. [Google Scholar]
- Čokl, M. Rast Tujih Iglavcev v Sloveniji; IGLG: Ljubljana, Slovenia, 1965; p. 234. [Google Scholar]
- Čater, M.; Diaci, J.; Roženbergar, D. Gap size and position influence variable response of Fagus sylvatica L. and Abies alba Mill. For. Ecol. Manag. 2014, 325, 128–135. [Google Scholar] [CrossRef]
- Čater, M.; Levanič, T. Response of Fagus sylvatica L. and Abies alba Mill. in different silvicultural systems of the high Dinaric karst. For. Ecol. Manag. 2013, 289, 278–288. [Google Scholar] [CrossRef]
- Čater, M.; Diaci, J. Divergent response of European beech, silver fir and Norway spruce advance regeneration to increased light levels following natural disturbance. For. Ecol. Manag. 2017, 399, 206–212. [Google Scholar] [CrossRef]
- Čater, M.; Levanič, T. Beech and silver fir’s response along the Balkan’s latitudinal gradient. Sci. Rep. 2019, 9, 16269. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Čater, M.; Schmid, I.; Kazda, M. Instantaneous and potential radiation effect on underplanted European beech below Norway spruce canopy. Eur. J. For. Res. 2012, 132. [Google Scholar] [CrossRef]
- Lewis, J.D.; Lucash, M.M.; Olszyk, D.M.; Tingey, D.T. Relationships between needle nitrogen concentration and photosynthetic responses of Douglas-fir seedlings to elevated CO2 and temperature. New Phytol. 2004, 162, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Douglas-fir—An Option for Europe. EFI What Science Can Tell Us. In COST Action FP1403 NNEXT, Supported by COST (European Cooperation in Science and Technology); European Cooperation in Science and Technology: Brussels, Belgium, 2019; p. 124. Available online: https://efi.int/sites/default/files/files/publication-bank/2019/efi_wsctu9_2019.pdf (accessed on 21 March 2021).
- Tyler, A.L.; MacMillan, D.C.; Dutch, J. Models to predict the General Yield Class of Douglas fir, Japanese larch and Scots pine on better quality land in Scotland. For. Int. J. For. Res. 1996, 69, 13–24. [Google Scholar] [CrossRef]
- Curt, T.; Bouchaud, M.; Agrech, G. Predicting site index of Douglas-Fir plantations from ecological variables in the Massif Central area of France. For. Ecol. Manag. 2001, 149, 61–74. [Google Scholar] [CrossRef]
- Corona, P.; Scotti, R.; Tarchiani, N. Relationship between environmental factors and site index in Douglas-fir plantations in central Italy. For. Ecol. Manag. 1998, 110, 195–207. [Google Scholar] [CrossRef]
- Klinka, K.; Carter, R.E. Relationships between Site Index and Synoptic Environmental Factors in Immature Coastal Douglas-Fir Stands. For. Sci. 1990, 36, 815–830. [Google Scholar] [CrossRef]
- Monserud, R.A.; Moody, U.; Breuer, D.W. A soil-site study for inland Douglas-fir. Can. J. For. Res. 1990, 20, 686–695. [Google Scholar] [CrossRef]
- Dunbar, A.; Dhubhain, A.N.; Bulfin, M. The productivity of Douglas fir in Ireland. For. Int. J. For. Res. 2002, 75, 537–545. [Google Scholar] [CrossRef]
- Kubeček, J.; Štefančík, I.; Podrázský, V.; Longauer, R. Výsledky výzkumu douglasky tisolisté (Pseudotsuga menziesii/Mirb./Franco) v České republice a na Slovensku—Přehled. [Results of the research of Douglas-fir in the Czech Republic and Slovakia-review]. For. J. 2014, 60, 120–129. [Google Scholar]
- Fontes, L.; Tomé, M.; Thompson, F.; Yeomans, A.; Luis, J.S.; Savill, P. Modelling the Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) site index from site factors in Portugal. For. Int. J. For. Res. 2003, 76, 491–507. [Google Scholar] [CrossRef] [Green Version]
- Fontes, L.; Tomé, M.; Coelho, M.B.; Wright, H.; Luis, J.S.; Savill, P. Modelling dominant height growth of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in Portugal. For. Int. J. For. Res. 2003, 76, 509–523. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Kreuzwieser, J.; Dannenmann, M.; Junker, L.V.; Kleiber, A.; Hess, M.; Jansen, K.; Eiblmeier, M.; Gessler, A.; Kohnle, U.; et al. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances. PLoS ONE 2018, 13, e0194684. [Google Scholar] [CrossRef]
- Savill, P. The Silviculture of Trees Used in British Forestry, 2nd ed.; CABI Publishing: Wallingford, Oxfordshire, UK, 2013. [Google Scholar]
- Lassoie, J.P.; Salo, D.J. Physiological response of large Douglas-fir to natural and induced soil water deficits. Can. J. For. Res. 1981, 11, 139–144. [Google Scholar] [CrossRef]
- Grieu, P.; Guehl, J.M.; Aussenac, G. The effects of soil and atmospheric drought on photosynthesis and stomatal control of gas exchange in three coniferous species. Physiol. Plant. 1988, 73, 97–104. [Google Scholar] [CrossRef]
- Jenssen, M. Die Grüne Douglasie im klimaplastischen Wald des Tieflandes—Ökoklimatisch-waldgeografische Grundlagen. Eberswalder Forstl. Schr. 2009, 43, 15–22. [Google Scholar]
- Bansal, S.; Harrington, C.A.; Gould, P.J.; St Clair, J.B. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Glob. Chang. Biol 2015, 21, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Košutnik, D. Celjski Mestni Gozd v Pečovniku; Hostnik, R., Ed.; Zavod za Gozdove Slovenije: Ljubljana, Slovenije, 2013; p. 193. [Google Scholar]
- Kupka, I.; Podrázský, V.; Kubeček, J. Soil-forming effect of Douglas fir at lower altitudes—A case study. J. For. Sci. 2013, 59, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Urban, J.; Holušová, K.; Menšík, L.; Čermák, J.; Kantor, P. Tree allometry of Douglas fir and Norway spruce on a nutrient-poor and a nutrient-rich site. Trees 2013, 27, 97–110. [Google Scholar] [CrossRef]
- Podrázský, V.; Martiník, A.; Matejka, K.J.; Viewegh, J. Effects of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) on understorey layer species diversity in managed forests. J. For. Sci. 2014, 60, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Remeš, J.; Zeidler, A. Production potential and wood quality of Douglas fir from selected sites in the Czech Republic. Wood Res. 2014, 59, 509–520. [Google Scholar]
- Lee, E.H.; Beedlow, P.A.; Waschmann, R.S.; Tingey, D.T.; Wickham, C.; Cline, S.; Bollman, M.; Carlile, C. Douglas-fir displays a range of growth responses to temperature, water, and Swiss needle cast in western Oregon, USA. Agric. For. Meteorol. 2016, 221, 176–188. [Google Scholar] [CrossRef]
- Little, R.L.; Peterson, D.L.; Silsbee, D.G.; Shainsky, L.J.; Bednar, L.J. Radial growth patterns and the effects of climate on second-growth Douglas-fir (Pseudotsuga menziesii) in the Siskiyou Mountains, Oregon. Can. J. For. Res. 1995, 25, 724–735. [Google Scholar] [CrossRef]
- Hostnik, R. Velikanke/The Giantess. In Najvišje Izmerjeno Drevo v Sloveniji/The Tallest Measured Tree in Slovenia; Zavod za gozdove Slovenije, Društvo za Trajnostni Razvoj Urbane Narave: Celje, Slovenia; Available online: https://www.youtube.com/watch?v=Cct0Nb5Yj_o (accessed on 21 March 2021).
- Podrázský, V.; Kupka, I.; Prknová, H. Substitution of Norway spruce for Douglas-fir: Changes of soil microbial activities as climate change induced shift in species composition—A case study. Cent. Eur. For. J. 2020, 66, 71–77. [Google Scholar] [CrossRef]
- Remeš, J.; Pulkrab, K.; Bílek, L.; Podrázský, V. Economic and Production Effect of Tree Species Change as a Result of Adaptation to Climate Change. Forests 2020, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Vejpustková, M.; Čihák, T. Climate Response of Douglas Fir Reveals Recently Increased Sensitivity to Drought Stress in Central Europe. Forests 2019, 10, 97. [Google Scholar] [CrossRef] [Green Version]
Location | Latitude (N) | Longitude (E) | Elevation (m a.s.l.) | Growing Stock (m3) |
---|---|---|---|---|
Postojna | 45°48′29.6′′ | 14°15′33.0′′ | 657 | 515 |
Celje | 46°11′32.2′′ | 15°15′51.8′′ | 651 | 540 |
Site/Light Category | O | Eo | Ei | C |
---|---|---|---|---|
Postojna | 13.2 ± 3.1 | 13.1 ± 2.4 | 13.1 ± 2.9 | 12.8 ± 4.1 |
Celje | 12.9 ± 4.2 | 12.9 ± 3.6 | 12.8 ± 3.9 | 12.8 ± 3.7 |
Postojna | Celje | ||||
---|---|---|---|---|---|
Microsite | T (°C) | RH (%) | T (°C) | RH (%) | |
DOY: 310-340 | 1 | 5.4 ± 2.7 | 90.7 ± 4.6 | 5.5 ± 2.7 | 96.7 ± 3.7 |
2 | 4.9 ± 2.6 | 91.7 ± 4.5 | 6.3 ± 2.9 | 99.5 ± 3.7 | |
3 | 5.0 ± 2.4 | 91.0 ± 3.8 | 6.2 ± 2.9 | 95.0 ± 4.3 | |
4 | 5.3 ± 2.3 | 90.5 ± 4.2 | 6.2 ± 2.7 | 94.6 ± 3.9 | |
mean | 5.2 ± 2.6 | 91.0 ± 4.3 | 6.0 ± 2.8 | 96.5 ± 3.9 | |
DOY: 162-171 | 1 | 16.2 ± 2.4 | 78.7 ± 9.8 | 15.2 ± 2.6 | 79.0 ± 11.0 |
2 | 16.0 ± 2.8 | 77.6 ± 10.0 | 16.8 ± 2.6 | 83.3 ± 10.2 | |
3 | 16.3 ± 2.7 | 78.7 ± 10.2 | 17.8 ± 3.2 | 82.1 ± 12.7 | |
4 | 16.4 ± 2.6 | 78.0 ± 10.1 | 17.4 ± 3.0 | 82.1 ± 14.9 | |
mean | 16.2 ± 2.6 | 78.2 ± 10.0 | 17.0 ± 2.8 | 81.6 ± 12.2 |
A | Φ | ||||
---|---|---|---|---|---|
df | F | p | F | p | |
Year | 2 | 0.2 | 0.84 NS | 0.9 | 0.41 NS |
Site | 1 | 753.5 | 0.000 *** | 164.4 | 0.000 *** |
Light category | 3 | 3781.4 | 0.000 *** | 1371.1 | 0.000 *** |
Year × Site | 2 | 0.0 | 0.96 NS | 0.9 | 0.42 NS |
Year × Light category | 6 | 0.1 | 0.99 NS | 0.3 | 0.94 NS |
Site × Light category | 3 | 306.0 | 0.000 *** | 153.1 | 0.000 *** |
Year × Site × Light category | 6 | 0.2 | 0.84 NS | 0.2 | 0.97 NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čater, M. Microsites Influence the Light Response of Young Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco). Forests 2021, 12, 687. https://doi.org/10.3390/f12060687
Čater M. Microsites Influence the Light Response of Young Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco). Forests. 2021; 12(6):687. https://doi.org/10.3390/f12060687
Chicago/Turabian StyleČater, Matjaž. 2021. "Microsites Influence the Light Response of Young Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco)" Forests 12, no. 6: 687. https://doi.org/10.3390/f12060687
APA StyleČater, M. (2021). Microsites Influence the Light Response of Young Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco). Forests, 12(6), 687. https://doi.org/10.3390/f12060687