Modelling the Material Resistance of Wood—Part 3: Relative Resistance in above- and in-Ground Situations—Results of a Global Survey
Abstract
:1. Introduction
- DEd is the exposure dose (d);
- DRd is the material resistance dose (d);
- DRd is the material resistance dose (d);
- Dcrit is the critical dose (d) corresponding to decay rating 1 (EN 252 [11]);
- kwa is a factor accounting for the wetting ability of the material (-) relative to a reference wood species;
- kinh is a factor accounting for the inherent protective properties of the material against decay (-) relative to a reference wood species.
2. Materials and Methods
2.1. Data Capturing
2.2. Data Assessment
- kinh is the factor accounting for the inherent protective properties of the material against decay (-);
- kinh,soil, i is the factor accounting for the inherent protective properties of the material against decay in tests with soil contact (-);
- kinh,non-soil, j is the factor accounting for the inherent protective properties of the material against decay in tests without soil contact (-);
- n is the number of tests.
- DRd,soil is the material resistance dose in soil contact (d);
- Dcrit is the critical dose corresponding to decay rating 1 (EN 252 [11]) (d);
- kinh,soil,lab is a factor accounting for the inherent protective properties of the material against decay in soil contact (-) relative to a reference wood species and determined in laboratory test.
Wood Species | Common Name | Above-Ground | In-Ground | References | |||||
---|---|---|---|---|---|---|---|---|---|
kinh | kwa | DRd,rel. | vrel. | kinh,soil,lab | DRd,rel. | vrel. | |||
Acacia mangium | Black wattle | - | - | - | 0.14 | - | - | - | [23] |
Acer platanoides/A. pseudoplatanus | Norway maple/Sycamore | 1.38 | 1.01 | 1.39 | 0.90 | - | 1.02 | 0.98 | [7,33,34,35,36,37] |
Acer saccharum | Sugar maple | - | - | - | 1.14 | - | - | - | [26] |
Afzelia bipindensis | Doussié | 11.72 | - | - | - | 6.54 | 6.54 | 0.15 | [38] |
Alnus glutinosa | Black alder | 0.89 | 1.06 | 0.94 | 1.35 | 0.33 | 0.72 | 0.90 | [7,35,37,39,40] |
Alnus rubra | Red alder sw | - | - | - | 1.33 | - | - | - | [26] |
Anacardium excelsum | Espavé | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Andira inermis | Cocú | - | - | - | 0.25 | - | 0.97 | 1.03 | [27] |
Aspidosperma megalocarpon | Carreto | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Astronium graveolens | Zorro | - | - | - | 0.25 | - | 5.11 | 0.20 | [27] |
Avicennia marina | Mangle salado | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Backhousia bancroftii | Johnstone River hardwood | - | - | - | 0.25 | - | - | - | [14] |
Bagassa guianensis | Tatajuba | - | - | - | 0.10 | - | - | - | [41] |
Betula alleghaniensis | Yellow birch | - | - | - | 1.07 | - | - | - | [26] |
Betula pendula/B. pubescens | Silver birch/Downy birch | 0.93 | 0.90 | 0.84 | 0.95 | - | 0.88 | 1.13 | [7,35,39,40] |
Bombacopsis quinata | Cedro espino | - | - | - | 0.25 | - | 5.11 | 0.20 | [27] |
Bombacopsis sessilis | Ceibo | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Brosium sp. | Berba | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Brosimum utile | Sande | 1.30 | - | - | - | 1.27 | 1.27 | 0.79 | [38] |
Bursera simaruba | Almaácigo | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Byrsonima crassifolia | Nance | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Caldcluvia australiensis | Rose alder | - | - | - | 0.50 | - | - | - | [14] |
Calophyllum brasiliense | María | 8.78 | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Calophyllum candidissium | Lemonwood | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Carapa slateri | Cedro macho | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Carapa sp. | Cedro vino | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Cardwellia sublimis | Northern silky oak | - | - | - | 0.52 | - | - | - | [14] |
Cariniana pyriformis | Chibugá, albaros | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Caryocar costaricense | Henené | - | - | - | 0.13 | - | 6.81 | 0.15 | [27] |
Caryocar sp. | Ajo | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Cassia moschata | Bronze shower | - | - | - | 0.19 | - | 5.11 | 0.20 | [27] |
Castanea sativa | Sweet chestnut | 7.36 | 1.27 | 9.31 | 0.00 | 3.03 | 2.38 | 0.57 | [35,39,40,42,43,44] |
Cedrela odorata | Cedro amargo | 6.00 | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Cedrela sp. | Cedro granadino | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Cedrelinga cateniformis | Cedrorana | - | - | - | 0.40 | - | - | - | [41] |
Centrolobium orinocense | Amarillo de Guayaquil | - | - | - | 0.19 | - | 5.11 | 0.20 | [27] |
Chlorophora tinctoria | Mora | - | - | - | 0.13 | - | 2.91 | 0.34 | [27] |
Chrysophyllum cainito | Star apple | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Colubrina glandulosa | Carbonero de amunición | - | - | - | 0.13 | - | 6.81 | 0.15 | [27] |
Concarpus erectus | Zaragosa | - | - | - | 0.19 | - | 5.11 | 0.20 | [27] |
Copaifera aromatica | Cabimo | - | - | - | 0.19 | - | 5.11 | 0.20 | [27] |
Cordia alliodora | Laurel negro | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Cordia elaeagnoides | Bocote | - | - | - | - | - | 16.83 | 0.06 | [27] |
Cornus disciflora | Mata hombro | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Corylus avellana | Common hazel | - | - | - | - | - | 0.45 | 2.23 | [-] 1 |
Corymbia citriodora | Lemon-scented gum | - | - | - | 0.14 | - | - | - | [14,23,28] |
Corymbia maculata | Spotted gum | 4.40 | - | - | 0.26 | - | 2.71 | 0.37 | [28,45,46] |
Coumarouna oleifera | Almendro | - | - | - | 0.25 | - | 5.11 | 0.20 | [27] |
Croton panamensis | Sangre | - | - | - | 3.30 | - | 0.39 | 2.58 | [27] |
Dacryodes copularis | Anime | 2.12 | - | - | - | 2.69 | 2.69 | 0.37 | [38] |
Dacryodes copularis | Anime sw | 3.25 | - | - | - | 1.92 | 1.92 | 0.52 | [38] |
Dalbergia granadillo | Dalbergia | - | - | - | - | - | 18.00 | 0.06 | [47] |
Dalbergia retusa | Cocobolo | - | - | - | 0.06 | - | 10.04 | 0.10 | [27] |
Diabyanthera gordonaefolia | Cuangare | 1.20 | - | - | - | 0.74 | 0.74 | 0.36 | [38] |
Dialium guianense | Tamarindo | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Dialyanthera otoba | Miguelario | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Dicorynia guianensis | Basralocus | 10.51 | 1.27 | 13.39 | 0.19 | - | 5.11 | 0.20 | [27,35,37,48,49] |
Diphysa robinioides | Macano | - | - | - | 0.13 | - | 6.81 | 0.15 | [27] |
Dipterocarpus spp. | Keruing | 7.54 | - | - | 0.19 | - | 11.18 | 0.09 | [23,50,51] |
Distemonanthus benthamianus | Movingui | 9.81 | - | - | - | 10.84 | 10.84 | 0.09 | [35,38] |
Dryobalanops spp. | Kapur | 9.18 | - | - | 0.14 | - | 4.96 | 0.20 | [14,51,52] |
Entandrophragma cylindricum | Sapelli | - | - | - | 0.56 | - | - | - | [41] |
Enterolobium cyclocarpum | Monkey-ear tree | - | - | - | 0.25 | - | 3.14 | 0.32 | [27] |
Erythrina glauca | Gallito | - | - | - | 3.30 | - | 0.39 | 2.58 | [27] |
Eschweilera sp. | Guayabo macho | - | - | - | 0.25 | - | 5.11 | 0.20 | [27] |
Eucalyptus astringens | Brown mallet | - | - | - | 0.28 | - | - | - | [28] |
Eucalyptus camaldulensis | River red gum | - | - | - | 0.03 | - | - | - | [28] |
Eucalyptus cladocalyx | Sugar gum | - | - | - | 0.13 | - | - | - | [28] |
Eucalyptus deglupta | Kamamere | - | - | - | 0.48 | - | - | - | [14] |
Eucalyptus delegatensis | Alpine ash | - | - | - | 0.49 | - | - | - | [14] |
Eucalyptus drepanophylla | Ironbark | - | - | - | 0.16 | - | - | - | [14] |
Eucalyptus grandis | Rose gum | - | - | - | 0.18 | - | - | - | [14] |
Eucalyptus leucoxylon | Yellow gum | - | - | - | 0.19 | - | - | - | [28] |
Eucalyptus obliqua | Messmate | - | - | - | 0.37 | - | - | - | [14,28] |
Eucalyptus occidentalis | Swamp yate | - | - | - | 0.32 | - | - | - | [28] |
Eucalyptus pilularis | Black butt | - | - | - | 0.16 | - | - | - | [14] |
Eucalyptus regnans | Mountain ash | - | - | - | 0.65 | - | 0.39 | 2.56 | [14,28] |
Eucalyptus resinifera | Red mahogany | - | - | - | 0.11 | - | - | - | [14] |
Eucalyptus saligna | Sydney blue gum | - | - | - | 0.19 | - | - | - | [14] |
Eucalyptus sideroxylon/E. tricarpa | Red ironbark | - | - | - | 0.15 | - | - | - | [28] |
Fagus sylvatica | European beech | 0.79 | 1.15 | 0.91 | 1.17 | 0.40 | 0.61 | 1.43 | [7,14,22,34,35,36,37,38,39,40,41,44,49,53,54,55,56,57,58,59] |
Flindersia brayleyana | Queensland maple | - | - | - | 0.51 | - | - | - | [14] |
Fraxinus excelsior | European ash | 2.50 | 1.00 | 2.50 | 0.39 | 0.44 | 1.30 | 0.71 | [7,22,35,39,40] |
Genipa americana | Jagua | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Gleditsia triacanthos | Honey locust | 5.71 | 1.64 | 9.35 | 0.11 | - | 1.96 | 0.51 | [-] 1 |
Gliricida sepium | Bala | - | - | - | 0.13 | - | 6.81 | 0.15 | [27] |
Guajacum officinale | Pockwood | - | - | - | 0.06 | - | 10.22 | 0.10 | [27] |
Guarea longipetiola | Chuchupate | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Guarea guara | Guaragao | - | - | - | 0.19 | - | 6.81 | 0.15 | [27] |
Heritiera utilis | Niangon | - | - | - | - | 2.44 | 2.44 | 0.41 | [38] |
Hieronima alchorneoides | Pantano | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Hippomane mancinella | Manzanillo | - | - | - | 3.30 | - | 0.39 | 2.58 | [27] |
Humiriastrume procerum | Chanul | 5.36 | - | - | - | 3.02 | 3.02 | 0.33 | [38] |
Hura crepitans | Nuno | - | - | - | 3.30 | - | 0.39 | 2.58 | [27] |
Hura polyandra | Possum wood | - | - | - | - | - | 3.06 | 0.33 | [47] |
Hyeronima alchorneoides | Zapatero | 7.16 | - | - | - | 1.94 | 1.94 | 0.52 | [-] 1 |
Hymenaea courbaril | Algarrobo | - | - | - | 0.25 | - | 5.11 | 0.20 | [27] |
Icuria dunensis | Ncurri | 4.77 | - | - | - | 3.96 | 3.96 | 0.25 | [60] |
Intsia bijuga | Merbau | 14.69 | 2.13 | 31.33 | 0.25 | - | 16.33 | 0.06 | [7,35,46,61] |
Koompassia malaccensis | Menggris | 8.70 | - | - | 0.32 | 12.06 | 12.06 | 0.08 | [23,50,51] |
Lafoënsia punicifolia | Amarillo negro | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Laguncularia racemosa | Mangle blanco | - | - | - | 0.25 | - | 0.97 | 1.03 | [27] |
Lecythis ampla | Coco | - | - | - | 0.19 | - | 6.81 | 0.15 | [27] |
Lecythis spp. | Coco | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Licania arborea | Raspa | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Licania pittieri | Jigua negra | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Liquidambar styraciflua | Sweetgum sw | - | - | - | 1.78 | - | - | - | [26] |
Lonchocarpus sp. | Iguanillo | - | - | - | 0.33 | - | 2.91 | 0.34 | [27] |
Lophira alata | Bongossi | 12.23 | 1.41 | 17.23 | 0.19 | - | 10.52 | 0.20 | [27,35,37,38,48,49,62,63] |
Lophostemon confertus | Brush box | - | - | - | 0.26 | - | - | - | [14] |
Luehea seemannii | Guácimo | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Magnolia sororum | Vaco | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Manilkara bidentata | Massaranduba | 12.41 | - | - | 0.19 | - | 6.81 | 0.15 | [27] |
Manilkara chicle | Níspero zapote | - | - | - | 0.19 | - | 2.91 | 0.34 | [27] |
Manilkara sp. | Rasca | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Micropholis spp. | Curupixa | 3.07 | - | - | - | 1.11 | 1.11 | 0.90 | [38] |
Milicia excelsa | Iroko | 12.07 | - | - | - | 18.00 | 11.81 | 0.18 | [38,52] |
Millettia laurentii | Wenge | 13.86 | - | - | - | 13.92 | 13.92 | 0.07 | [38] |
Minquartia guianensis | Manwood | - | - | - | 0.13 | - | 6.81 | 0.15 | [27] |
Mora excelsa | Black Mora | 4.89 | - | - | - | - | 2.35 | 0.46 | [52] |
Mora oleifera | Alcornoque | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Myroxylon balsamum | Bálsamo | - | - | - | 0.19 | - | 5.11 | 0.20 | [27] |
Nectandra spp. | Jigua baboso | 3.51 | - | - | - | 1.28 | 1.28 | 0.78 | [38] |
Nectandra spp. | Jigua baboso sw | 2.23 | - | - | - | 0.93 | 0.93 | 1.08 | [38] |
Nectandra whitei | Bambito | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Neolamarckia cadamba | Kelampayan | - | - | - | 1.46 | - | - | - | [23] |
Neorites kevedianus | Fishtail silky oak | - | - | - | 0.18 | - | - | - | [14] |
Ocotea spp. | Aguacatillo | 10.00 | - | - | - | 11.93 | 11.93 | 0.08 | [38] |
Ocotea spp. | Aguacatillo sw | 9.42 | - | - | - | 11.67 | 11.67 | 0.09 | [38] |
Ocotea dendrodaphne | Ensiva | - | - | - | 0.19 | - | 6.81 | 0.15 | [27] |
Ocotea rodiei | Greenheart | - | - | - | 0.06 | - | 10.22 | 0.10 | [27] |
Paramachaerium gruberi | Sangrillo negro | - | - | - | 0.25 | - | 5.11 | 0.20 | [27] |
Parashorea tomentella | White Lauan | - | - | - | - | 0.93 | 2.14 | 0.47 | [52] |
Paulownia spp. | Kiri | 4.92 | 0.98 | 4.82 | 0.21 | - | 0.51 | 1.95 | [37], [-] 1 |
Pelliciera rhizophorae | Palo de sal | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Peltogyne spp. | Amaranth | 11.17 | 1.82 | 20.33 | 0.25 | - | 5.11 | 0.20 | [27,33,37] |
Peniaclethra macroloba | Gavilán | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Pericopsis angolensis | Muanga | 12.54 | - | - | - | 7.07 | 7.07 | 0.14 | [60] |
Persea rigens | Amarillo | 10.96 | - | - | - | 11.50 | 11.50 | 0.09 | [38] |
Persea rigens sw | Amarillo sw | 8.47 | - | - | - | 5.45 | 5.45 | 0.18 | [38] |
Phoebe johonstonii | Aguacatillo | - | - | - | 1.32 | - | 0.39 | 2.58 | [27] |
Pithecellobium mangense | Uña de gato | - | - | - | 0.13 | - | 10.22 | 0.10 | [27] |
Pithecellobium saman | Rain tree | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Platymiscum pinnatum | Quirá | - | - | - | 0.19 | - | 6.81 | 0.15 | [27] |
Populus balsamifera | Balsam poplar sw | - | - | - | 1.00 | - | - | - | [26] |
Populus nigra/Populus spp. | Poplar | 0.85 | 1.04 | 0.88 | 1.14 | 0.56 | 0.76 | 1.04 | [35,37,38,49,52,58] |
Populus tremula | Aspen | 1.03 | 0.95 | 0.97 | 1.04 | 0.25 | 0.94 | 0.62 | [7,14,34,36,39,40] |
Pouteria campechiana | Mamecillo | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Pouteria chiricana | Nispero de monte | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Prioria copaifera | Cativo | - | - | - | 3.30 | - | 0.39 | 2.58 | [27] |
Prunus avium | Cherry | - | 0.81 | - | 0.70 | - | - | - | [7] |
Prunus serotina | Black cherry | 2.73 | 0.84 | 2.28 | 0.44 | 1.69 | 1.69 | 0.59 | [64] |
Pseudolachnostylis maprounaefolia | Ntholo | 13.50 | - | - | - | 9.00 | 9.00 | 0.11 | [60] |
Quercus robur/Q. petraea | European oak | 7.05 | 1.41 | 9.92 | 0.47 | 1.94 | 2.77 | 0.38 | [7,14,18,21,22,27,30,33,35,37,38,39,40,49,50,52,53,55,57,59,62,63,65] |
Rhizophora brevistyla | Mangle rojo (Pacific) | - | - | - | 0.44 | - | 2.91 | 0.34 | [27] |
Rhizophora mangle | Mangle rojo (Atlantic) | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Robinia pseudoacacia | Black locust | 7.47 | 1.93 | 14.39 | 0.24 | 1.38 | 2.67 | 0.19 | [7,30,35,37,39,40,49,59,62,63,66] |
Salix caprea | Goat willow | 1.36 | 0.99 | 1.35 | 0.50 | - | 1.46 | 0.69 | [7], [-] 1 |
Shorea spp. | Meranti | 7.30 | - | - | - | 12.35 | 7.38 | 0.42 | [38,52] |
Shorea spp. | Light Red Meranti | - | - | - | 0.46 | - | - | - | [14,23,41] |
Shorea spp. | Dark Red Meranti | - | - | - | 0.51 | - | - | - | [41] |
Shorea spp. | Red balau | - | - | - | 0.12 | - | - | - | [14] |
Shorea macrophylla | Engkabang jantong | - | - | - | 1.63 | - | - | - | [23] |
Sorbus aucuparia | Rowan | 1.36 | 0.86 | 1.17 | 0.56 | 1.12 | 1.46 | 0.56 | [7,64] |
Sterculia apetala | Panamá | - | - | - | 3.30 | - | 0.39 | 2.58 | [27] |
Sterculia appendiculata | Metil | 2.33 | - | - | - | 0.82 | 0.82 | 1.22 | [60] |
Swaetzia panamensis | Cutarro | - | - | - | 0.19 | - | 5.11 | 0.20 | [27] |
Swaetzia simplex | Cutarro | - | - | - | 0.19 | - | 0.97 | 1.03 | [27] |
Sweetia panamensis | Malvecino | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Swietenia humillis | Mexican mahogany | - | - | - | 0.19 | - | 11.22 | 0.09 | [27] |
Swietenia macrophylla | Mahogany | - | - | - | 0.44 | - | 5.11 | 0.20 | [27] |
Symphonia globustifera | Sambogum | 9.49 | - | - | - | - | 0.97 | 1.03 | [27] |
Syzygium wesas | White Eungella satinash | - | - | - | 0.17 | - | - | - | [14] |
Tabebuia chrysantha | Guayacán negro | - | - | - | 0.19 | - | 5.11 | 0.20 | [27] |
Tabebuia donnell-smithii | Gold tree | - | - | - | - | - | 2.80 | 0.36 | [47] |
Tabebuia guayacan | Guayacán | - | - | - | 0.13 | - | 6.81 | 0.15 | [27] |
Tabebuia pentaphylla | Roble de sabana | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Tabebuia rosea | Rosy trumpet tree | - | - | - | - | - | 2.24 | 0.54 | [47] |
Talauma dixonii | Cucharillo | 4.61 | - | - | - | 2.06 | 2.06 | 0.49 | [38] |
Talauma dixonii | Cucharillo sw | 3.05 | - | - | - | 0.71 | 0.71 | 1.41 | [38] |
Tectona grandis | Teak | 12.65 | 1.68 | 21.25 | 0.16 | 1.40 | 7.83 | 0.10 | [7,27,35,37,39,40,49,67] |
Tectona grandis | Teak sw | 5.42 | - | - | - | 1.03 | 1.03 | 0.97 | [-] 1 |
Terminalia amazonia | Amarillo | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Terminalia catappa | Almond | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Terminalia myriocarpa | Dalienze | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Ternstroemia seemannii | Manglillo | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Tetragastris panamensis | Anime | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Tetrathylacium johansenii | Macho | - | - | - | 1.32 | - | 0.39 | 2.58 | [27] |
Tilia americana | Basswood | - | - | - | 2.00 | - | - | - | [26] |
Tilia americana sw | Basswood sw | - | - | - | 1.60 | - | - | - | |
Tilia cordata | Lime | 1.18 | 0.89 | 1.05 | 0.86 | - | 1.39 | 0.72 | [7] |
Trattinickia aspera | Caraño | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Trichilia tuberculata | Alfaje | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Ulmus glabra | Wych elm | 2.94 | 0.96 | 2.83 | 0.39 | - | 1.66 | 0.60 | [7,52] |
Vatairea sp. | Amargo-amargo | - | - | - | 0.25 | - | 2.91 | 0.34 | [27] |
Virola spp. | Chalviande | - | - | - | - | 0.71 | 0.71 | 1.41 | [38] |
Virola koschnyi | Bogamani | - | - | - | 1.32 | - | 0.97 | 1.03 | [27] |
Virola serbifera | Mancha | - | - | - | 1.32 | - | 0.39 | 2.58 | [27] |
Vitex floridula | Cuajado | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Vochysia ferruginea | Mayo | - | - | - | 0.44 | - | 1.94 | 0.52 | [27] |
Vouacapoua americana | Acapú | - | - | - | 0.06 | - | 10.22 | 0.10 | [27] |
Zanthoxylum belizense | Acabú | - | - | - | 0.44 | - | 0.97 | 1.03 | [27] |
Wood Species | Common Name | Above-Ground | In-Ground | References | |||||
---|---|---|---|---|---|---|---|---|---|
kinh | kwa | DRd,rel. | vrel. | kinh,soil,lab | DRd,rel. | vrel. | |||
Abies alba | Silver fir | 1.26 | 0.91 | 1.14 | 1.14 | 1.21 | 1.24 | 0.84 | [7,30] |
Abies balsamea | Balsam fir | - | - | - | - | - | 1.23 | 0.81 | [52] |
Araucaria cunninghammii | Hoop pine | - | - | 1.18 | - | - | - | - | [14] |
Callitris endlichrei | Black cypress | - | - | 0.39 | - | - | 2.14 | 0.47 | [14] |
Callitris endlichrei | Black cypress sw | - | - | 0.96 | - | - | 1.74 | 0.57 | [14] |
Callitris glaucophylla | White cypress | - | - | 0.32 | - | - | 3.98 | 0.25 | [14,27] |
Callitris glaucophylla | White cypress sw | - | - | 1.18 | - | - | 1.45 | 0.69 | [14] |
Chamaecyparis lawsoniana | Port Orford cedar | 3.99 | - | - | - | 1.54 | 1.54 | 0.65 | [-] 1 |
Chamaecyparis lawsoniana | Port Orford cedar sw | 1.68 | - | - | - | 1.30 | 1.30 | 0.77 | [-] 1 |
Chamaecyparis nootkatensis | Yellow cypress | - | - | 0.45 | - | - | 2.97 | 0.34 | [68] |
Cupressus x leylandii | Leyland cypress | - | - | - | - | - | 2.87 | 0.35 | [52,69] |
Juniperus communis | Juniper | 10.30 | 1.17 | 12.10 | 0.32 | 18.00 | 7.53 | 0.13 | [7,64] |
Larix decidua | European larch | 3.72 | 1.51 | 5.62 | 0.34 | 1.16 | 2.30 | 0.29 | [7,22,23,30,35,39,40,41,49,52,54,58,59] |
Larix decidua | European larch sw | - | - | - | 0.93 | - | - | - | [7] |
Larix laricina | Tamarack | - | - | - | 0.57 | - | 1.76 | 0.57 | [68] |
Larix occidentalis | Western larch | - | - | - | 0.69 | - | 2.27 | 0.44 | [68] |
Larix sibirica | Siberian larch | 3.65 | 0.96 | 3.49 | 0.45 | - | 4.86 | 0.21 | [7,14,21,35,53,54,70,71] |
Metasequoia glyptostroboides | Dawn redwood | 3.90 | - | - | - | 2.16 | 2.16 | 0.46 | [-] 1 |
Metasequoia glyptostroboides | Dawn redwood sw | 1.64 | - | - | - | 0.99 | 0.99 | 1.01 | [-] 1 |
Picea sitchensis | Sitka spruce | 1.30 | 1.79 | 2.32 | 0.86 | - | 1.14 | 0.88 | [7] |
Pinus spp. | Southern pine sw | 3.75 | 0.79 | 2.97 | 0.76 | 0.78 | 0.87 | 1.00 | [7,26,34,36] |
Pinus carribaea | Carribean pine | - | - | - | 0.82 | - | 2.91 | 0.34 | [14,27] |
Pinus contorta | Lodgepole pine sw | - | - | - | 1.78 | - | - | - | [72] |
Pinus elliottii | Slash pine | - | - | - | 1.13 | - | - | - | [14,23] |
Pinus elliottii | Slash pine sw | - | - | - | 1.28 | - | - | - | [14,23] |
Pinus pinea | Stone pine sw | - | 0.94 | - | 0.62 | - | - | - | [43,73] |
Pinus radiata | Radiata pine sw | 1.29 | 0.92 | 1.19 | 0.98 | 1.34 | 1.16 | 1.12 | [7,35,37] |
Pinus resinosa | Red pine sw | - | - | - | 1.60 | - | - | - | [26] |
Pinus sylvestris | Scots pine | 3.39 | 1.13 | 3.83 | 0.47 | 1.31 | 1.86 | 0.53 | [7,14,21,22,23,30,31,35,41,49,52,53,54,55,59,71,74,75] |
Pinus sylvestris | Scots pine sw | 1.05 | 1.00 | 1.04 | 0.83 | 1.10 | 1.07 | 0.95 | [7,18,22,23,30,31,34,35,36,37,41,49,53,54,55,58,59,76] |
Podocarpus spp. | Podocarpus | 1.21 | - | - | - | - | - | 0.83 | [52] |
Pseudotsuga menziesii | Douglas fir | 4.86 | 1.66 | 8.06 | 0.55 | 4.27 | 3.34 | 0.37 | [7,14,23,27,30,35,37,38,41,43,49,54,55,68,75,77,78] |
Pseudotsuga menziesii | Douglas fir sw | 2.29 | 1.04 | 2.39 | 0.83 | 1.07 | 1.43 | 0.62 | [7,26,43,54] |
Taxus baccata | Yew | 15.69 | 1.03 | 16.19 | 0.06 | 18.00 | 15.46 | 0.08 | [39,40,64], [-] 1 |
Thuja occidentalis | Eastern white cedar | - | - | - | 0.59 | - | 2.56 | 0.39 | [68,78,79] |
Thuja plicata | Western red cedar (N.-America) | 8.41 | 0.90 | 7.56 | 0.42 | - | 2.63 | 0.38 | [7,14,23,33,35,49,68,78] |
Thuja plicata | Western red cedar sw (N.-America) | - | - | - | 1.45 | - | - | - | [7,52] |
Thuja plicata | Western red cedar (Europe) | 8.33 | 0.86 | 7.15 | 0.35 | - | 2.11 | 0.47 | [26] |
Tsuga heterophylla | Western hemlock | - | - | - | 0.94 | - | 1.15 | 0.87 | [23,52] |
Tsuga heterophylla | Western hemlock sw | - | - | - | 1.23 | - | - | - | [26] |
Wood Species and Treatment | Above-Ground | In-Ground | References | |||||
---|---|---|---|---|---|---|---|---|
kinh | kwa | DRd,rel. | vrel. | kinh,soil,lab | DRd,rel. | vrel. | ||
Fagus sylvatica—TM | 6.64 | 2.08 | 13.81 | 0.02 | - | 4.68 | 0.21 | [22,58,80] |
Larix decidua—TM | - | 3.44 | - | 0.02 | - | - | - | [22,58] |
Picea abies—TM | 4.90 | 4.23 | 20.72 | 0.34 | 4.38 | 2.98 | 0.39 | [22,31,34,53,58,66,75,81] |
Pinus maritima—TM | 4.48 | - | - | 0.61 | 5.73 | 4.63 | 0.62 | [75] |
Pinus sylvestris—TM | 7.30 | 1.71 | 12.47 | 0.53 | 11.19 | 5.36 | 0.47 | [7,18,21,31,36,37,53,66,75,81,82] |
Castanea sativa—OHT | - | - | - | - | - | 1.70 | 0.59 | [43] |
Fraxinus excelsior—OHT | 12.82 | 1.77 | 22.72 | 0.07 | 14.00 | 11.79 | 0.19 | [7] |
P. abies—OHT | 13.83 | 1.37 | 18.95 | 0.16 | 13.49 | 9.66 | 0.17 | [7,30] |
P. sylvestris—OHT | 6.69 | - | - | 0.11 | 5.36 | 4.19 | 0.54 | [18,75] |
Pseudotsuga menziesii—OHT | - | - | - | - | - | 1.92 | 0.52 | [43] |
Pinus ssp. sw (Southern pine)—AC | 17.89 | 1.31 | 23.48 | 0.04 | 18.00 | 17.78 | 0.04 | [7] |
P. sylvestris/P. radiata sw—AC | 17.61 | 1.82 | 32.05 | 0.07 | 18.00 | 17.23 | 0.07 | [7,21,37,53,66,82,83] |
Acer platanoides—FA | 8.14 | 1.53 | 12.46 | 0.05 | 2.33 | 3.86 | 0.12 | [7,34,84] |
Pinus spp. sw (Southern pine—FA | 9.15 | 1.45 | 13.30 | 0.12 | 6.01 | 6.54 | 0.14 | [7,34] |
P. sylvestris sw—FA | 12.77 | 1.96 | 25.06 | 0.27 | 6.91 | 7.53 | 0.11 | [7,21,25] |
F. sylvatica—DMDHEU, 20% WPG | - | - | - | 0.47 | - | 1.59 | 0.63 | [29] |
F. sylvatica—DMDHEU, 30% WPG | - | - | - | 0.12 | - | 2.65 | 0.38 | [29] |
P. sylvestris—DMDHEU, 20% WPG | 9.95 | 1.16 | 11.52 | 0.45 | 10.72 | 7.34 | 0.19 | [7,24,29,37,82] |
P. sylvestris—DMDHEU, 30% WPG | 10.69 | - | - | 0.18 | - | 6.66 | 0.15 | [29] |
Wood Species and Treatment | Above-Ground | In-Ground | References | |||||
---|---|---|---|---|---|---|---|---|
kinh | kwa | DRd,rel. | vrel. | kinh,soil,lab | DRd,rel. | vrel. | ||
Pinus sylvestris, CCA, 2 kg/m3 | 11.56 | 1.31 | 15.17 | 0.10 | 7.16 | 5.12 | 0.18 | [7,66,71] |
P. sylvestris, CCA, 4 kg/m3 | 12.89 | 1.21 | 15.61 | 0.13 | 6.42 | 7.79 | 0.12 | [7,25,34,36,53,82] |
P. sylvestris, CCA, 9 kg/m3 | 12.85 | 0.94 | 12.02 | 0.06 | 9.56 | 11.87 | 0.08 | [25,31,34,36,53,66] |
Pinus radiata, CCA, 5 kg/m3 | 10.68 | - | - | - | - | 4.25 | 0.24 | [46], [-] 1 |
P. radiata, CCA, 10 kg/m3 | - | - | - | - | - | 8.22 | 0.12 | [-] 1 |
P. radiata, CCA, 13.5 kg/m3 | - | - | - | - | - | 8.65 | 0.12 | [-] 1 |
Picea abies, Cu (II) sulph. low | 5.19 | 0.93 | 4.81 | 0.69 | 1.82 | 1.82 | 0.55 | [24] |
P. abies, Cu (II) sulph. high | 6.16 | 0.95 | 5.83 | 0.63 | 2.66 | 2.66 | 0.38 | |
P. abies, CuEA low | 5.20 | 1.00 | 5.21 | 0.61 | 2.37 | 2.37 | 0.42 | |
P. abies, CuEA high | 4.79 | 0.97 | 4.66 | 0.65 | 2.00 | 2.00 | 0.50 | |
P. abies, CuEAOA low | 4.68 | 1.02 | 4.78 | 0.11 | 1.72 | 1.72 | 0.58 | |
P. abies, CuEAOA high | 4.36 | 1.11 | 4.85 | 0.57 | 1.98 | 1.98 | 0.51 | |
P. abies, CuEAOAQuat low | 6.68 | 0.92 | 6.14 | 0.21 | 1.45 | 1.45 | 0.69 | |
P. abies, CuEAOAQuat high | 6.97 | 0.97 | 6.79 | 0.01 | 1.84 | 1.84 | 0.54 | |
P. abies, BorEAOAQuat low | 6.00 | 1.06 | 6.34 | 0.86 | 0.85 | 0.85 | 1.18 | |
P. abies, BorEAOAQuat high | 5.77 | 1.80 | 10.37 | 0.61 | 0.88 | 0.88 | 1.14 | |
P. abies, Cu 0.25 %, dip. 8-h | 7.60 | 0.83 | 6.29 | 0.58 | 1.47 | 1.47 | 0.68 | [85] |
P. abies, Cu 0.25 %, dip. 24-h | 8.78 | 0.85 | 7.44 | 0.46 | 1.71 | 1.71 | 0.59 | |
P. abies, Cu 0.25 %, vac. | 10.79 | 0.86 | 9.29 | 0.17 | 3.57 | 3.57 | 0.28 | |
P. abies, Cu 0.25 %, vac. + press. | 10.08 | 0.81 | 8.17 | 0.03 | 4.50 | 4.50 | 0.22 | |
P. abies, Cu 0.5 %, dip. 8-h | 8.71 | 0.85 | 7.39 | 0.39 | 1.54 | 1.54 | 0.65 | |
P. abies, Cu 0.5 %, dip. 24-h | 9.59 | 0.83 | 7.99 | 0.42 | 2.94 | 2.94 | 0.34 | |
P. abies, Cu 0.5 %, vac. | 9.24 | 0.84 | 7.72 | 0.13 | 3.18 | 3.18 | 0.32 | |
P. abies, Cu 0.5 %, vac. + press. | 9.37 | 0.84 | 7.83 | 0.15 | 3.60 | 3.60 | 0.28 | |
P. sylvestris, Cu 0.25 %, dip. 8-h | 6.56 | 1.88 | 12.35 | 0.16 | 1.39 | 1.39 | 0.72 | |
P. sylvestris, Cu 0.25 %, dip. 24-h | 7.38 | 1.10 | 8.10 | 0.09 | 2.38 | 2.38 | 0.42 | |
P. sylvestris, Cu 0.25 %, vac. | 10.01 | 1.31 | 13.15 | 0.09 | 2.01 | 2.01 | 0.50 | |
P. sylvestris, Cu 0.25 %, vac. + press. | 10.42 | 1.01 | 10.51 | 0.00 | 3.03 | 3.03 | 0.33 | |
P. sylvestris, Cu 0.5 %, dip. 8-h | 8.34 | 1.22 | 10.14 | 0.13 | 2.55 | 2.55 | 0.39 | |
P. sylvestris, Cu 0.5 %, dip. 24-h | 9.57 | 1.13 | 10.80 | 0.09 | 2.75 | 2.75 | 0.36 | |
P. sylvestris, Cu 0.5 %, vac. | 10.60 | 1.00 | 10.65 | 0.03 | 3.59 | 3.59 | 0.28 | |
P. sylvestris, Cu 0.5 %, vac. + press. | 9.85 | 1.24 | 12.24 | 0.00 | 3.28 | 3.28 | 0.31 | |
Larix decidua, Cu 0.25 %, dip. 24-h | 6.40 | 4.74 | 30.35 | 0.00 | 1.03 | 1.03 | 0.97 | [85] |
L. decidua, Cu 0.25 %, vac. + press. | 9.55 | 2.15 | 20.52 | 0.17 | 1.10 | 1.10 | 0.91 | |
L. decidua, Cu 0.5 %, dip. 24-h | 7.66 | 1.86 | 14.25 | 0.09 | 1.14 | 1.14 | 0.88 | |
L. decidua, Cu 0.5 %, vac. | 9.34 | 5.31 | 49.57 | 0.06 | 0.87 | 0.87 | 1.15 | |
L. decidua, Cu 0.5 %, vac. + press. | 7.85 | 1.78 | 13.95 | 0.20 | 1.32 | 1.32 | 0.76 | |
P. sylvestris, Cu based, Use class 3 | - | - | - | 0.12 | 7.79 | 6.64 | 0.19 | [7,31,66,82], [-] 1 |
P. sylvestris, CCB 6 kg/m3 | 9.08 | - | - | 0.15 | 9.30 | 7.77 | 0.19 | [30,75] |
P. sylvestris, CCB 17 kg/m3 | 15.91 | - | - | 0.00 | 18.00 | 13.83 | 0.19 | [75] |
P. sylvestris., metal-free organic | 10.21 | 0.79 | 8.06 | 0.09 | 0.89 | 2.41 | 0.21 | [7,34] |
3. Results and Discussion
3.1. Relationship between Relative Decay Rates in- and above-Ground
3.2. Modelling Material Resistance in Soil Contact
4. Conclusions
- For the first time, a global survey was performed to summarize decay performance in above- and in-ground situations;
- The material resistance was quantified for a high number of wood species and treated timbers, and was expressed in terms of a relative material resistance dose, DRd,rel., with Norway spruce as the reference species;
- Following systematic comparative studies on the biological durability and the moisture performance of other reference species than Norway spruce, it was possible to increase the amount of exploitable data for modelling;
- Since the material resistance differs significantly between in-ground and above-ground exposure situations, the adapted above-ground model presented in Part 2 of this publication [10] was further adapted and simplified to predict relative decay rates in soil contact, vrel.,soil, based on laboratory tests with wood in contact with soil and/or soft rot fungi in a laboratory;
- The use of conversion factors for different reference species implies an additional source of error, and needs to be considered in addition to the natural variation in material resistance and thus the two prediction models;
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leicester, R.H.; Wang, C.H.; Nguyen, M.N.; MacKenzie, C.E. Design of exposed timber structures. Austr. J. Struct. Eng. 2009, 9, 241–248. [Google Scholar] [CrossRef]
- Thelandersson, S.; Isaksson, T.; Suttie, E.; Frühwald, E.; Toratti, T.; Grüll, G.; Viitanen, H.; Jermer, J. Service Life of Wood in Outdoor above Ground Applications—Engineering Design Guideline; Report TVBK-3061; Divison of Structural Engineering, Lund University: Lund, Sweden, 2011. [Google Scholar]
- Isaksson, T.; Thelandersson, S.; Jermer, J.; Brischke, C. “Beständighet för Utomhusträ Ovan Mark.” Guide för Utformning och Materialval (Rapport TVBK–3066); Division of Structural Engineering, Lund University: Lund, Sweden, 2014. [Google Scholar]
- Pousette, A.; Malo, K.A.; Thelandersson, S.; Fortino, S.; Salokangas, L.; Wacker, J. Durable Timber Bridges-Final Report and Guidelines. 2017. Available online: https://www.diva-portal.org/smash/get/diva2:1116787/fulltext01.pdf (accessed on 29 March 2021).
- Niklewski, J. Durability of Timber Members—Moisture Conditions and Service Life Assessment of Bridge Detailing. Doctoral Dissertation, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Brischke, C.; Thelandersson, S. Modelling the outdoor performance of wood products–A review on existing approaches. Constr. Build. Mater. 2014, 66, 384–397. [Google Scholar] [CrossRef]
- Meyer-Veltrup, L.; Brischke, C.; Alfredsen, G.; Humar, M.; Flæte, P.O.; Isaksson, T.; Larsson Brelid, P.; Westin, M.; Jermer, J. The combined effect of wetting ability and durability on outdoor performance of wood: Development and verification of a new prediction approach. Wood Sci. Technol. 2017, 51, 615–637. [Google Scholar] [CrossRef]
- Isaksson, T.; Brischke, C.; Thelandersson, S. Development of decay performance models for outdoor timber structures. Mater. Struct. 2013, 46, 1209–1225. [Google Scholar] [CrossRef]
- Alfredsen, G.; Brischke, C.; Marais, B.N.; Stein, R.F.A.; Humar, M. Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species. Forests 2021, 12, 558. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.O.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modelling the Material Resistance of Wood—Part 2: Validation and Optimization of the Meyer-Veltrup Model. Forests 2021, 12, 576. [Google Scholar] [CrossRef]
- EN 252. Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative in Ground Contact; European Committee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
- EN 113-2. Durability of Wood and Wood-Based Products—Test Method against Wood Destroying Basidiomycetes—Part 2: Assessment of Inherent or Enhanced Durability; European Committee for Standardization: Brussels, Belgium, 2020. [Google Scholar]
- AWPA E7. Standard Field Test for Evaluation of Wood Preservatives to be used in Ground Contact (UC4A, UC4B, UC4C), Stake Test; American Wood Preservers’ Association: Hoover, Alabama, 2013. [Google Scholar]
- Brischke, C.; Meyer, L.; Alfredsen, G.; Humar, M.; Francis, L.; Flæte, P.O.; Larsson-Brelid, P. Natural durability of timber exposed above ground-A survey. Drv. Ind. 2013, 64, 113–129. [Google Scholar] [CrossRef]
- ENV 807. Wood Preservatives—Determination of the Effectiveness against Soft Rotting Micro-Fungi and other Soil Inhabiting Micro-Organisms; European Committee for Standardization: Brussels, Belgium, 2001. [Google Scholar]
- Bravery, A.F. A Miniaturised Wood-Block Test for the Rapid Evaluation of Preservative Fungicides. In Proceedings of a Special Seminar Held in Association with the 10th Annual Meeting of the IRG, Peebles, Scotland, 18–22 September 1978; Rep. No. 136; Swedish Wood Preservation Institute: Stockholm, Sweden, 1979. [Google Scholar]
- CEN/TS 16818. Durability of Wood and Wood-Based Products—Moisture Dynamics of Wood and Wood-Based Products; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- Welzbacher, C.R.; Rapp, A.O. Determination of the water sorption properties and preliminary results from field tests above ground of thermally modified material from industrial scale processes. In Proceedings of the IRG Annual Meeting, IRG/WP/04-40279, Ljubljana, Slovenia, 6–10 June 2004; p. 14. [Google Scholar]
- CEN/TS 12037. Wood Preservatives—Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative Exposed out of Ground Contact—Horizontal Lap-Joint Method; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- Meyer, L.; Brischke, C.; Preston, A. Testing the durability of timber above ground: A review on methodology. Wood Mater. Sci. Eng. 2016, 11, 283–304. [Google Scholar] [CrossRef]
- Hundhausen, U.; Flæte, P.O.; Mahnert, K.C.; Bysheim, K. Overflatekvalitet på terrassematerialer—resultater etter to års eksponering. Tretek. Inf. 2016, 1, 23–27. [Google Scholar]
- Humar, M.; Lesar, B.; Kržišnik, D.; Brischke, C. Performance of wood decking after 5 years of exposure: Verification of the combined effect of wetting ability and durability. Forests 2019, 10, 903. [Google Scholar] [CrossRef][Green Version]
- Francis, L.P.; Norton, J.; Melcher, E.; Wong, A.H.H.; Kok Lai, J.; Klamer, M.; Konkler, M.J.; Morrell, J.J. Performance of untreated timbers in above ground decking tests: Preliminary results from an international collaborative trial. In Proceedings of the IRG Annual Meeting, IRG/WP 19-10940, Quebec City, QC, Canada, 12–16 May 2019; p. 21. [Google Scholar]
- Humar, M.; Lesar, B.; Thaler, N. Performance of copper treated and naturally durable wood in laboratory and outdoor conditions. In Proceedings of the International Conference on Durability of Building Materials and Components, Sao Paulo, Brazil, 2–5 September 2014; pp. 722–727. [Google Scholar]
- Alfredsen, G.; Flæte, P.O.; Militz, H. Performance of Novel Wood Protection Systems—Evaluation Based on Five Different Test Setups. In Proceedings of the Society of Wood Science and Technology, Geneva, Switzerland, 11–14 October 2010. [Google Scholar]
- Highley, T.L. Comparative durability of untreated wood in use above ground. Int. Biodeter. Biodegr. 1995, 35, 409–419. [Google Scholar] [CrossRef]
- Bultman, J.D.; Southwell, C.R. Natural resistance of tropical American woods to terrestrial wood-destroying organisms. Biotropica 1976, 8, 71–212. [Google Scholar] [CrossRef]
- Cookson, L.J.; McCarthy, K.J. Influence of tree age and density on the above-ground natural durability of eucalypt species at Innisfail. Aust. For. 2013, 76, 113–120. [Google Scholar] [CrossRef]
- Emmerich, L.; Militz, H.; Brischke, C. Long-term performance of DMDHEU-treated wood installed in different test set-ups in ground, above ground and in the marine environment. Int. Wood Prod. J. 2020, 11, 27–37. [Google Scholar] [CrossRef]
- Augusta, U. Untersuchung der natürlichen Dauerhaftigkeit wirtschaftlich bedeutender Holzarten bei verschiedener Beanspruchung im Außenbereich. Doctoral Dissertation, University Hamburg, Hamburg, Germany, 2007. [Google Scholar]
- Metsä-Kortelainen, S.; Viitanen, H. Durability of thermally modified sapwood and heartwood of Scots pine and Norway spruce in the modified double layer test. Wood Mater. Sci. Eng. 2017, 12, 129–139. [Google Scholar] [CrossRef]
- Stirling, R.; Alfredsen, G.; Brischke, C.; De Windt, I.; Francis, L.P.; Frühwald Hansson, E.; Humar, M.; Jermer, J.; Klamer, M.; Kutnik, M.; et al. Global survey on durability variation—On the effect of the reference species. In Proceedings of the IRG Annual Meeting, IRG/WP 16-20573, Lisbon, Portugal, 15–19 May 2016; p. 26. [Google Scholar]
- Findlay, W.P.K. The natural resistance to decay of some Empire timbers. Emp. For. J. 1938, 17, 249–259. [Google Scholar]
- Westin, M. Durability of furfurylated wood—Results from laboratory and field tests in the Ecobinders project. In Proceedings of the IRG Annual Meeting, IRG/WP/12-40602, Kuala Lumpur, Malaysia, 6–10 May 2011; p. 7. [Google Scholar]
- Van Acker, J.; De Windt, I.; Li, W.; Van den Bulcke, J. Critical parameters on moisture dynamics in relation to time of wetness as factor in service life prediction. In Proceedings of the IRG Annual Meeting, IRG/WP/14-20555, St. George, UT, USA, 11–15 May 2014; p. 22. [Google Scholar]
- Westin, M.; Conti, E.; Creemers, J.; Flæte, P.O.; Gellerich, A.; Irbe, I.; Klamer, M.; Melcher, E.; Moeller, R.; Nunes, L.; et al. 10-year Report on COST E37 Round Robin Tests—Comparison of results from laboratory and field tests. In Proceedings of the IRG Annual Meeting, IRG/WP/17-30718, Ghent, Belgium, 4–8 June 2017; p. 13. [Google Scholar]
- Emmerich, L.; Brischke, C.; Sievert, M.; Schulz, M.S.; Jaeger, A.C.; Beulshausen, A.; Humar, M. Predicting the outdoor moisture performance of wood based on laboratory indicators. Forests 2020, 11, 1001. [Google Scholar] [CrossRef]
- Van Acker, J.; Militz, H.; Stevens, M. The significance of accelerated laboratory testing methods determining the natural durability of wood. Holzforschung 1999, 53, 449–458. [Google Scholar] [CrossRef]
- Wälchli, O. Die Widerstandsfähigkeit verschiedener Holzarten gegen Angriffe durch den echten Hausschwamm (Merulius lacrimans (Wulf.) Fr.). Holz Roh Werkst. 1973, 31, 96–102. [Google Scholar] [CrossRef]
- Wälchli, O. Die Widerstandsfähigkeit verschiedener Holzarten gegen Angriffe durch Coniophora puteana (Schum. ex Fr.) Karst. (Kellerschwamm) und Gloephyllum trabeum (Pers. ex Fr.) Murrill (Balkenblättling). Holz Roh Werkst. 1976, 34, 335–338. [Google Scholar] [CrossRef]
- Brischke, C.; Gellerich, A.; Militz, H.; Starck, M. Performance of coated and uncoated horizontal lap-joint members during 20 years of outdoor exposure. Wood Res. 2017, 62, 883–894. [Google Scholar]
- Militz, H.; Busetto, D.; Hapla, F. Investigation on natural durability and sorption properties of Italian Chestnut (Castanea sativa Mill.) from coppice stands. Holz Roh Werkst. 2003, 61, 133–141. [Google Scholar] [CrossRef]
- Palanti, S. Evaluation of durability conferred by an oleothermic treatment on chestnut and Douglas fir through laboratory and in field tests. Open J. For. 2013, 3, 66–69. [Google Scholar]
- Thaler, N.; Žlahtič, M.; Humar, M. Performance of recent and old sweet chestnut (Castanea sativa) wood. Int. Biodeter. Biodegr. 2014, 94, 141–145. [Google Scholar] [CrossRef]
- Johnson, G.C.; Thornton, J.D.; Trajstman, A.C.; Cookson, L.J. Comparative in-ground natural durability of white and black cypress pines (Callitris glaucophylla and C. endlicheri). Aust. For. 2006, 69, 243–247. [Google Scholar] [CrossRef]
- Cookson, L.J. Determining the natural durability of Eucalypts in Australia. In Durable Eucalypts on Drylands: Protecting and Enhancing Value; Altaner, C.M., Murray, T.J., Morgenroth, J., Eds.; Marlborough Research Centre: Blenheim, New Zealand, 2017; pp. 77–84. [Google Scholar]
- Colín-Urieta, S.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; López-Albarrán, P.; Gabriel-Parra, R.; Ngangyo-Heya, M. Natural durability of seven tropical timber species in ground contact at three sites in México. J. Trop. For. Sci. 2018, 30, 75–81. [Google Scholar]
- Clark, J.W. Natural Decay Resistance of Fifteen Exotic Woods Imported for Exterior Use; Forest Products Laboratory Research Paper FPL-RP-103; U.S. Forest Service: Madison, WI, USA, 1969.
- Van Acker, J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Le Bayon, I.; Kleist, G.; Peek, R.D. Biological durability of wood in relation to end-use. Holz Roh Werkst. 2003, 61, 35–45. [Google Scholar] [CrossRef]
- Seehann, G. Zur natürlichen Dauerhaftigkeit von Kempas und Keruing gegenüber holzzerstörenden Pilzen. Holz Roh Werkst. 1973, 31, 269–272. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hong, L.T. A laboratory method for predicting the durability of tropical hardwoods. JARQ 1994, 28, 268–275. [Google Scholar]
- Smith, G.A.; Orsler, R.J. The biological natural durability of timber in ground contact. In Proceedings of the IRG Annual Meeting, IRG/WP 94-20051, Nusa Dua, Bali, Indonesia, 29 May–3 June 1994; p. 23. [Google Scholar]
- Edlund, M.-L. Durability of some alternatives to preservative-treated wood. In Proceedings of the IRG Annual Meeting, IRG/WP 04-30353, Ljubljana, Slovenia, 6–10 June 2004; p. 13. [Google Scholar]
- Van den Bulcke, J.; De Windt, I.; Defoirdt, N.; Van Acker, J. Non-destructive evaluation of wood decay. In Proceedings of the IRG Annual Meeting, IRG/WP/11-20479, Queenstown, New Zealand, 8–12 May 2011; p. 11. [Google Scholar]
- Brischke, C.; Meyer, L.; Olberding, S. Durability of wood exposed in ground e Comparative field trials with different soil substrates. Int. Biodegr. Biodeter. 2014, 86, 108–114. [Google Scholar] [CrossRef]
- Brischke, C.; Welzbacher, C.R.; Gellerich, A.; Bollmus, S.; Humar, M.; Plaschkies, K.; Scheiding, W.; Alfredsen, G.; Van Acker, J.; De Windt, I. Wood natural durability testing under laboratory conditions: Results from a round-robin test. Eur. J. Wood Wood Prod. 2014, 72, 129–133. [Google Scholar] [CrossRef]
- Meyer, L.; Brischke, C.; Melcher, E.; Brandt, K.; Lenz, M.T.; Soetbeer, A. Durability of English oak (Quercus robur L.)—Comparison of decay progress and resistance under various laboratory and field conditions. Int. Biodeter. Biodegr. 2014, 86, 79–85. [Google Scholar] [CrossRef]
- Ugovšek, A.; Šubic, B.; Starman, J.; Rep, G.; Humar, M.; Lesar, B.; Thaler, N.; Brischke, C.; Meyer-Veltrup, L.; Jones, D.; et al. Short-term performance of wooden windows and facade elements made of thermally modified and non-modified Norway spruce in different natural environments. Wood Mater. Sci. Eng. 2019, 14, 42–47. [Google Scholar] [CrossRef]
- Scheiding, W.; Jacobs, K.; Bollmus, S.; Brischke, C. Durability classification of treated and modified wood—approaching a guideline for sampling, testing, and statistical analysis. In Proceedings of the IRG Annual Meeting, IRG/WP 20-20676, Online Webinar. 10–11 June 2020; p. 8. [Google Scholar]
- Ali, A.C. Physical-Mechanical Properties and Natural Durability of Lesser used Wood Species from Mozambique. Doctoral Dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2011. [Google Scholar]
- Reinprecht, L.; Vidholdová, Z. Rot resistance of tropical wood species affected by water leaching. BioResources 2019, 14, 8664–8677. [Google Scholar]
- Deklerck, V.; De Ligne, L.; Espinoza, E.; Beeckman, H.; Van den Bulcke, J.; Van Acker, J. Assessing the natural durability of xylarium specimens: Mini-block testing and chemical fingerprinting for small-sized samples. Wood Sci. Technol. 2020, 54, 981–1000. [Google Scholar] [CrossRef]
- Deklerck, V.; De Windt, I.; Defoirdt, N.; Van den Bulcke, J.; Beeckman, H.; Espinoza, E.; Van Acker, J. Assessing the natural durability for different tropical timber species using the mini-block test. In Proceedings of the IRG Annual Meeting, IRG/WP 17-10886, Ghent, Belgium, 4–8 June 2017; p. 14. [Google Scholar]
- Brischke, C.; Hesse, C.; Meyer-Veltrup, L.; Humar, M. Studies on the material resistance and moisture dynamics of Common juniper, yew, black cherry, and rowan. Wood Mater. Sci. Eng. 2018, 13, 222–230. [Google Scholar] [CrossRef]
- Conti, E. English Oak—Natural Durable Timber—Laboratory Test Results. IRG/WP Durability Database; The International Research Group on Wood Protection, IRG/WP/DDB 14-00014; IRG Secretariat: Stockholm, Sweden, 2014. [Google Scholar]
- Westin, M.; Alfredsen, G. Durability of modified wood in UC3 and UC4—Results from lab tests and 5 years testing in 3 fields. In Proceedings of the IRG Annual Meeting, IRG/WP/11-40562, Queenstown, New Zealand, 8–12 May 2011; p. 9. [Google Scholar]
- Bavendamm, W.; Anuwongse, B. Über die Fäulnisresistenz thailändischer Holzarten. Holz Roh Werkst. 1967, 25, 392–393. [Google Scholar] [CrossRef]
- Stirling, R.; Wong, D. Performance of naturally durable decks after 15 years of field exposure. In Proceedings of the IRG Annual Meeting, IRG/WP 20-10963, Online Webinar. 10–11 June 2020; p. 9. [Google Scholar]
- Jones, T.G.; Low, C.B.; Meder, R.; O’Callahan, D.R.; Milne, P.G.; Chittenden, C.M.; Ebdon, N.; Dungey, H.S. Heartwood of Cupressus lusitanica, C. macrocarpa, Leyland and Ovens cypress and prediction of its durability using near-infrared spectroscopy. Eur. J. Wood Prod. 2013, 71, 183–192. [Google Scholar] [CrossRef]
- Petrenko, I.A. Stoikost’ Zaboloni i Yadra Listvennitsy Sibirskoi k Porazheniyu Razlichnymi Vidami Domovykh Gribov; Sibirskii Tekhnologicheskii Institut: Krasnoyarsk, Russia, 1964; pp. 261–264. (In Russian) [Google Scholar]
- Venäläinen, M.; Heikkonen, S.; Terziev, N.; Torniainen, P. Durability of the Siberian larch heartwood timber of different origin: The results of 11-year ground contact test in Finland. Sib. J. For. Sci. 2019, 3, 14–19, (In English with Russian abstract). [Google Scholar]
- Hart, J.H.; Shrimpton, D.M. Role of stilbenes in resistance of wood to decay. Phytopathology 1979, 69, 1138–1143. [Google Scholar] [CrossRef]
- De Angelis, M.; Romagnoli, M.; Vek, V.; Poljanšek, I.; Oven, P.; Thaler, N.; Lesar, B.; Kržišnik, D.; Humar, M. Chemical composition and resistance of Italian stone pine (Pinus pinea L.) wood against fungal decay and wetting. Ind. Crops Prod. 2018, 117, 187–196. [Google Scholar] [CrossRef]
- Meyer, L.; Brischke, C.; Pilgård, A. Moisture performance based wood durability testing. In Proceedings of the IRG Annual Meeting, IRG/WP 12-20495, Kuala Lumpur, Malaysia, 6–10 May 2012; p. 26. [Google Scholar]
- Brischke, C.; Meyer-Veltrup, L. Performance of thermally modified wood during 14 years of outdoor exposure. Int. Wood Prod. J. 2016, 7, 89–95. [Google Scholar] [CrossRef]
- Brischke, C.; Melcher, E. Performance of wax-impregnated timber out of ground contact: Results from long-term field testing. Wood Sci. Technol. 2015, 49, 189–204. [Google Scholar] [CrossRef]
- Schulz, G. Vergleichende Untersuchungen mit verschiedenen Stämmen von Lentinus lepideus, gleichzeitig ein Beitrag zum Soil-block-Verfahren. Holz Roh Werkst. 1958, 16, 435–444. [Google Scholar] [CrossRef]
- Morris, P.I.; Ingram, J.; Larkin, G.; Laks, P. Field tests of naturally durable species. For. Prod. J. 2011, 61, 344–351. [Google Scholar] [CrossRef]
- Conti, E. Eastern White Cedar—Natural Durable Timber—Laboratory Test Results. IRG/WP Durability Database; The International Research Group on Wood Protection, IRG/WP/DDB 14-00011; IRG Secretariat: Stockholm, Sweden, 2014. [Google Scholar]
- Plaschkies, K.; Scheiding, W.; Jacobs, K.; Rangno, N. Virulence of two Laboratory Test Strains and one Natural Isolate of Rhodonia (Oligoporus) placenta against Thermally Modified Pine and Beech Wood. In Proceedings of the IRG Annual Meeting, IRG/WP 13-20524, Stockholm, Sweden, 16–20 June 2013; p. 9. [Google Scholar]
- Viitanen, H.; Metsä-Kortelainen, S. Testing of decay resistance of sapwood and heartwood of thermally modified Scots pine and Norway spruce. In Proceedings of the IRG Annual Meeting, IRG/WP/10-40523, Biarritz, France, 9–13 May 2010; p. 10. [Google Scholar]
- Alfredsen, G.; Brischke, C.; Meyer-Veltrup, L.; Humar, M.; Flæte, P.-O. The effect of different test methods on durability classification on modified wood. ProLigno 2017, 13, 290–297. [Google Scholar]
- Jacobs, K.; Scheiding, W.; Weiß, B. Durability of acetylated Radiata pine: Laboratory tests and performance in practice. In Proceedings of the IRG Annual Meeting, IRG/WP 20-40899, Online Webinar. 10–11 June 2020; p. 14. [Google Scholar]
- Ziethén, R.; Brynildsen, P.; Lande, S.; Kristoffersen, J.; Westin, M. Kebony—An Alternative to Teak for Boat Decking. In Proceedings of the Fourth European Conference on Wood Modification, Norra Latin City Conference Centre, Stockholm, Sweden, 27–29 April 2009; SP Technical Research Institute of Sweden: Borås, Sweden.
- Humar, M.; Lesar, B.; Thaler, N.; Kržišnik, D.; Žlatič, M. Influence of the retention and penetration of Cu based preservatives on the performance of softwoods in ground. In Designing with Bio-Based Building Materials—Challenges and Opportunities; De Troya, T., Ed.; Book of Abstract from Joint Technical Workshop; National Institute for Agricultural and Food Research and Technology: Madrid, Spain, 2016. [Google Scholar]
- Brischke, C.; Wegener, F.L. Impact of water holding capacity and moisture content of soil substrates on the moisture content of wood in terrestrial microcosms. Forests 2019, 10, 485. [Google Scholar] [CrossRef][Green Version]
- Marais, B.N.; Brischke, C.; Militz, H. Wood durability in terrestrial and aquatic environments—A review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 2020, 1–24. [Google Scholar] [CrossRef]
- Marais, B.N.; Brischke, C.; Militz, H.; Peters, J.H.; Reinhardt, L. Studies into fungal decay of wood in ground contact—Part 1: The influence of water-holding capacity, moisture content, and temperature of soil substrates on fungal decay of selected timbers. Forests 2020, 11, 1284. [Google Scholar] [CrossRef]
- Brischke, C.; Welzbacher, C.R.; Meyer, L.; Bornemann, T.; Larsson-Brelid, P.; Pilgård, A.; Frühwald Hansson, E.; Westin, M.; Rapp, A.O.; Thelandersson, S.; et al. Service Life Prediction of Wooden Components—Part 3: Approaching a Comprehensive Test Methodology. In Proceedings of the IRG Annual Meeting, IRG/WP 11-20464, Queenstown, New Zealand, 8–12 May 2011; p. 25. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.O.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modelling the Material Resistance of Wood—Part 3: Relative Resistance in above- and in-Ground Situations—Results of a Global Survey. Forests 2021, 12, 590. https://doi.org/10.3390/f12050590
Brischke C, Alfredsen G, Humar M, Conti E, Cookson L, Emmerich L, Flæte PO, Fortino S, Francis L, Hundhausen U, et al. Modelling the Material Resistance of Wood—Part 3: Relative Resistance in above- and in-Ground Situations—Results of a Global Survey. Forests. 2021; 12(5):590. https://doi.org/10.3390/f12050590
Chicago/Turabian StyleBrischke, Christian, Gry Alfredsen, Miha Humar, Elena Conti, Laurie Cookson, Lukas Emmerich, Per Otto Flæte, Stefania Fortino, Lesley Francis, Ulrich Hundhausen, and et al. 2021. "Modelling the Material Resistance of Wood—Part 3: Relative Resistance in above- and in-Ground Situations—Results of a Global Survey" Forests 12, no. 5: 590. https://doi.org/10.3390/f12050590