Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Field
2.2. DNA Analysis
2.3. Statistical Analysis
3. Results
3.1. Inference of Origin and Genetic Structure in Iki-no-Matsubara Based on DBH
3.2. Genetic Diversity and Genetic Structure of PWN-P. thunbergii Resistant Trees
4. Discussion
4.1. Inference of Origin and Genetic Structure in Iki-no-Matsubara based on DBH
4.2. Genetic Management of P. thunbergii in Iki-no-Matsubara with Kyushu PWN-P. thunbergii Resistant Trees
4.3. Kyushu PWN-P. thunbergii Resistant Trees Deployment Management as Part of Genetic Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No | DBH Class Range | Number of Trees | Loci |
---|---|---|---|
1 | 1–30 cm | 82 | bcpt2532 |
1 | bcpt1823 | ||
2 | 31–60 cm | 5 | bcpt1671 |
1 | bcpt834 | ||
3 | 61–90 cm | 1 | bcpt1671 |
4 | bcpt834 |
No | PWN-P. thunbergii Resistant Trees | |||
---|---|---|---|---|
Tohoku | Kansai | Kanto | Kyushu | |
1 | Naruse39 | Tanabe54 | Odaka37 | Shima64 |
2 | Naruse72 | Bizen143 | Odaka203 | Tsuyazaki50 |
3 | Naruse6 | Mitoyo103 | Iwaki27 | Karatsu1 |
4 | Watari5 | Namikata37 | Osuga5 | Karatsu4 |
5 | Yamamoto82 | Namikata73 | Osuga6 | Karatsu7 |
6 | Yamamoto84 | Misaki90 | Osuga12 | Karatsu9 |
7 | Yamamoto90 | Yoshida2 | Osuga15 | Karatsu11 |
8 | Yuza27 | Yasu37 | Osuga23 | Karatsu16 |
9 | Yuza72 | Tosashimizu63 | Utchihara5 | Karatsu17 |
10 | Yuza33 | Kumihama10 | Tomiura7 | Obama30 |
11 | Yuza54 | Kumihama21 | Okazaki25 | Oseto12 |
12 | Yuza56 | Kumihama109 | Okazaki34 | Kawaura8 |
13 | Yuza58 | Amino31 | Okazaki35 | Kawaura13 |
14 | Yuza60 | Amino43 | Amakusa20 | |
15 | Yuza57 | Tango47 | Oita8 | |
16 | Yuza59 | Tango50 | Sadowara8 | |
17 | Yuza77 | Tango51 | Sadowara14 | |
18 | Murakami2 | Tango58 | Sadowara15 | |
19 | Murakami5 | Tango60 | Miyazaki20 | |
20 | Murakami11 | Tango65 | Sendai20 | |
21 | Murakami16 | Tango69 | Ei425 | |
22 | Murakami44 | Tango71 | Hiyoshi1 | |
23 | Murakami9 | Totori7 | Hiyoshi5 | |
24 | Murakami15 | Totori13 | Hukiage25 | |
25 | Nigata8 | Iwami63 | Okagaki1 | |
26 | Nigata40 | Nisinosima142 | Okagaki5 | |
27 | Nigata3 | Komatsu99 | Okagaki6 | |
28 | Aikawa27 | Ota39 | Okagaki8 | |
29 | Nagaoka15 | Hamada6 | Okagaki25 | |
30 | Nagaoka8 | Hamada12 | Okagaki29 | |
31 | Ozika151 | Hamada24 | Okagaki31 | |
32 | Sendai35 | Hamada28 | Okagaki32 | |
33 | Ishimaki251 | Gotsu29 | Okagaki35 | |
34 | Ishimaki260 | Yunotsu52 | Okagaki20 | |
35 | Ishimaki259 | Hukube51 | Munakata2 | |
36 | Atsumi43 | Hukube54 | Munakata4 | |
37 | Tsuruoka38 | Hukube60 | Munakata12 | |
38 | Tsuruoka44 | Hukube61 | Munakata19 | |
39 | Tsuruoka46 | Hukube71 | Shingu2 | |
40 | Zyoetsu1 | Koryo60 | Shingu5 | |
41 | Zyoetsu10 | Koryo77 | Shingu11 | |
42 | Kaga387 | Shingu14 | ||
43 | Kaga388 | Shingu17 | ||
44 | Kaga295 | |||
45 | Shiga396 | |||
46 | Tsuruga14 | |||
47 | Tsuruga15 |
Pop1 | Pop2 | FST | Nm |
---|---|---|---|
Hukiage | Kyushu PWN-P. thunbergii resistant trees | 0.020 | 12.308 |
Soo | Kyushu PWN-P. thunbergii resistant trees | 0.033 | 7.349 |
Miyazaki | Kyushu PWN-P. thunbergii resistant trees | 0.027 | 8.956 |
Minamishimabara | Kyushu PWN-P. thunbergii resistant trees | 0.007 | 34.354 |
Amakusa | Kyushu PWN-P. thunbergii resistant trees | 0.008 | 32.530 |
Kitsuki | Kyushu PWN-P. thunbergii resistant trees | 0.016 | 15.698 |
Karatsu | Kyushu PWN-P. thunbergii resistant trees | 0.008 | 32.144 |
Iki-no-Matsubara (Fukuoka) | Kyushu PWN-P. thunbergii resistant trees | 0.010 | 25.961 |
Okagaki | Kyushu PWN-P. thunbergii resistant trees | 0.010 | 24.077 |
References
- Fuhrer, E. Forest function, ecosystem stability and management. For. Ecol. Manag. 2000, 132, 29–38. [Google Scholar] [CrossRef]
- Krott, M. Forest Policy Analysis; European Forest Institute; Springer: Amsterdam, The Netherlands, 2005; ISBN 978-1-4020-3485-5. [Google Scholar]
- Santika, T.; Meijaard, E.; Wilson, K.A. Designing multifunctional landscapes for forest conservation. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Benz, J.P.; Chen, S.; Dang, S.; Dieter, M.; Labelle, E.R.; Liu, G.; Hou, L.; Mosandl, R.M.; Pretzsch, H.; Pukall, K.; et al. Multifunctionality of forests: A white paper on challenges and opportunities in China and Germany. Forests 2020, 11, 266. [Google Scholar] [CrossRef]
- Aravanopoulos, F. Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests 2018, 9, 355. [Google Scholar] [CrossRef]
- Ratnam, W.; Rajora, O.P.; Finkeldey, R.; Aravanopoulos, F.; Bouvet, J.M.; Vaillancourtf, R.E.; Kanashiro, M.; Fady, B.; Tomita, M.; Vinson, C. Genetic effects of forest management practices: Global synthesis and perspectives. For. Ecol. Manag. 2014, 333, 52–65. [Google Scholar] [CrossRef]
- Tubby, K.V.; Webber, J.F. Pests and diseases threatening urban trees under a changing climate. For. Int. J. For. Res. 2010, 83, 451–459. [Google Scholar] [CrossRef]
- Milner-Gulland, E.J. Interactions between human behaviour and ecological systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 270–278. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A. Conservation and monitoring of tree genetic resources in temperate forests. Curr. For. Rep. 2016, 2, 119–129. [Google Scholar] [CrossRef]
- Ledig, F.T. The conservation of diversity in forest trees: Why and how should genes be conserved? BioScience 1988, 38, 471–479. [Google Scholar] [CrossRef]
- Rajora, O.P.; Pluhar, S.A. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theor. Appl. Genet. 2003, 106, 1203–1212. [Google Scholar] [CrossRef]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics; Cabi: Cambridge, MA, USA, 2007; ISBN 978-0-85199-083-5. [Google Scholar]
- Japan Meteorological Agency. Climate Change Monitoring Report 2017; Japan Meteorological Agency: Tokyo, Japan, 2018; pp. 31–55.
- Ministry of the Environment; Ministry of the Education Culture, Sports, Science, and Technology; Ministry of the Agriculture, Forestry, and Fisheries; Ministry of the Land, Infastructure, Transport, and Tourism; Japan Meteorological Agency. Synthesis Report on Observations, Projections, and Impact Assesments of Climate Change, 2018: Climate Change in Japan and It’s Impacts; Ministry of the Environment: Tokyo, Japan, 2018; pp. 1–7.
- Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worrall, J.J.; Woods, A.J. Climate change and forest diseases. Plant Pathol. 2011, 60, 133–149. [Google Scholar] [CrossRef]
- Forestry Agency. State of Japan’s Forest and Forest Management: 3rd Country Report of Japan to the Montreal Process; Forest Agency: Tokyo, Japan, 2019.
- Ministry of Agriculture, Forestry, and Fisheries. Niji-no-Matsubara (Pine Grove) Recreation Forest. Available online: https://www.rinya.maff.go.jp/e/national_forest/recreation_forest/niji.html (accessed on 20 April 2020).
- Iwaizumi, M.G.; Miyata, S.; Hirao, T.; Tamura, M.; Watanabe, A. Historical seed use and transfer affect geographic specificity in genetic diversity and structure of old planted Pinus thunbergii population. For. Ecol. Manag. 2018, 408, 211–219. [Google Scholar] [CrossRef]
- Suwa, R. Evaluation of the wave attenuation function of a coastal black pine Pinus thunbergii forest using the individual-based dynamic vegetation model SEIB-DGVM. J. For. Res. 2013, 18, 238–245. [Google Scholar] [CrossRef]
- Ichihara, Y.; Fukuda, K.; Suzuki, K. Early symptom development and histological change associated with migration of Bursaphelenchus xylophilus in seedling tissues of Pinus thunbergii. Plant Dis. 2000, 84, 675–680. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Matsunaga, K.; Watanabe, A. Influence of temperature on pine wilt disease progression in Pinus thunbergii seedlings. Eur. J. Plant Pathol. 2019, 156, 1–10. [Google Scholar] [CrossRef]
- Linnakoski, R.; Kasanen, R.; Dounavi, A.; Forbes, K.M. Forest health under climate change: Effects on tree resilience, and pest and pathogen dynamics. In Frontiers in Plant Science; Frontiers Media SA: Lausanne, Switzerland, 2019; pp. 5–7. [Google Scholar] [CrossRef]
- Hirata, A.; Nakamura, K.; Nakao, K.; Kominami, Y.; Tanaka, N.; Ohashi, H.; Takano, K.T.; Takeuchi, W.; Matsui, T. Potential distribution of pine wilt disease under future climate change scenarios. PLoS ONE 2017, 12, 1–18. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Toda, T.; Nishimura, K.; Yamate, H.; Fuyuno, S. Breeding project on resistance to pine-wood nematode-an outline of the research and the achievement of the project for ten years. Bull. For. Tree Breed. Inst. 1989, 3, 1–84. [Google Scholar]
- Kurinobu, S. Current status of resistance breeding of Japanese pine species to pine wilt disease. For. Sci. Technol. 2008, 4, 51–57. [Google Scholar] [CrossRef]
- Matsunaga, K.; Watanabe, A. characterization of pine wood nematode and development of more improved second generation resistant trees [In Japanese]. For. Genet. Tree Breed. 2018, 7, 115–119. [Google Scholar] [CrossRef]
- FFPRI. Forest tree breeding center and forest bio-research center brochure. In Forest Research and Management Organization National Research and Development Agency; FFPRI: Tokyo, Japan, 2018. [Google Scholar]
- Aitken, S.N.; Whitlock, M.C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 367–388. [Google Scholar] [CrossRef]
- Içgen, Y.; Kaya, Z.; Çengel, B.; Velioǧlu, E.; Öztürk, H.; Önde, S. Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey. For. Ecol. Manag. 2006, 225, 328–336. [Google Scholar] [CrossRef]
- Konnert, M.; Fady, B.; Gomory, D.; A’Hara, S.; Wolter, F.; Ducci, F.; Koskela, J.; Bozzano, M.; MaKowalczyk, J. Use and transfer of forest reproductive material in europe in the context of climate change. In European Forest Genetic Resources Programme (EUFORGEN), Bioversity International; Euforgen: Rome, Italy, 2015; ISBN 978-92-9255-031-8. [Google Scholar]
- Ingvarsson, P.K.; Dahlberg, H. The effect of clonal forestry on genetic diversity in wild and domesticated stands of forest trees. Scandinavian J. For. Res. 2019, 34, 370–379. [Google Scholar] [CrossRef]
- Kavaliauskas, D.; Fussi, B.; Westergren, M.; Aravanopoulos, F.; Finzgar, D.; Baier, R.; Alizoti, P.; Bozic, G.; Avramidou, E.; Konnert, M.; et al. The interplay between forest management practices, genetic monitoring, and other long-term monitoring systems. Forests 2018, 9, 133. [Google Scholar] [CrossRef]
- Bailey, J.K.; Schweitzer, J.A.; Ubeda, F.; Koricheva, J.; LeRoy, C.J.; Madritch, M.D.; Rehill, B.J.; Bangert, R.K.; Fischer, D.G.; Allan, G.J.; et al. From genes to ecosystems: A synthesis of the effects of plant genetic factors across levels of organization. Philos. Trans. Royal Soc. B Biol. Sci. 2009, 364, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka City. The Iki-no-Matsubara pine forest and genko borui. Hakata Cult. 2016, 133. Available online: http://www.fukuoka-now.com (accessed on 23 December 2019).
- Awano, T. An evaluation of the intrinsic value of the takada pine forest (Takakada-no-Matsubara) as a scenic beauty spot in japan. Urban Reg. Plan. Rev. 2015, 2, 18–30. [Google Scholar] [CrossRef]
- Park, K.W.; Sokh, H.; Inoue, S. Local inhabitants consciousness of using and managing urban forest Aaea-a case study of iki no matsubara in fukuoka city. J. Fac. Agric. Kyushu Univ. 2003, 47, 267–275. [Google Scholar]
- Studhalter, R.A.; Glock, W.S.; Agerter, S.R. Tree gowth: Some historical chapters in the study of diameter growth. Bot. Rev. 1963, 29, 245–365. [Google Scholar] [CrossRef]
- Pilcher, J.R. Sample preparation, cross-dating, and measurement. In Method of Dendrochronology: Application in the Environmental Sciences; Editor Cook, E., Kairiukstis, L., Eds.; Springer Science & Business Media Dordrecht: Berlin, Germany, 1992; pp. 40–50. ISBN 978-94-015-7879-0. [Google Scholar]
- Omura, H. Tree, forests, and religion in japan. Mt. Res. Dev. 2004, 24, 179–182. [Google Scholar] [CrossRef]
- Fukatsu, E.; Isoda, K.; Hirao, T.; Watanabe, A. Development and characterization of simple sequence repeat dna markers for Zelkova serrata. Mol. Ecol. Notes 2005, 5, 378–380. [Google Scholar] [CrossRef]
- Korbie, D.J.; Mattick, J.S. Protocol: Touchdown pcr for increased specifiy and sensitivity in pcr amplification. Nat. Protoc. 2008, 3, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GENALEX 6.5: Genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3.2). 2001. Available online: http://www2.unil.ch/popgen/softwares/fstat.html (accessed on 20 December 2019).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; von Holdt, B.M. Stcuture harvester: A website and program for visualizing structure output and implementing the evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Welt, R.S.; Litt, A.; Franks, S.J. Analysis of population genetic structure and gene fow in an annual plant before and after a rapid evolutionary response to drought. AoB Plants 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Funda, T.; lstibůrek, M.; Lachout, P.; Klápště, J.; El-Kassaby, Y.A. Optimization of combine genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genet. Genomes 2009, 5, 583–593. [Google Scholar] [CrossRef]
- Kang, K.S.; Lindgren, D.; Mullin, T.J. Prediction of genetic gain and genetic diversity in seed orchard crops under alternative management strategies. Theor. Appl. Genet. 2001, 103, 1099–1107. [Google Scholar] [CrossRef]
- David, A.; Pike, C.; Stine, R. Comparison of selection methods for optimizing genetic gain and gene diversity in a red pine (Pinus resinosa Ait.). Theor. Appl. Genet. 2003, 107, 843–849. [Google Scholar] [CrossRef]
- Funda, T. Population Genetics of Conifer Seed Orchard. Ph.D. Thesis, The Faculty of Graduate Studies (Forestry), The University of British Columbia, Vancouver, BC, Canada, 2012. [Google Scholar]
- Kitzmiller, J.H. Managing genetic diversity in a tree improvement program. For. Ecol. Manag. 1990, 35, 131–149. [Google Scholar] [CrossRef]
- Wheeler, N.C.; Jech, K.S. The use of electrophoretic markers in seed orchard research. New For. 1992, 6, 311–328. [Google Scholar] [CrossRef]
- Slatkin, M. Gene flow and the geographic structure of natural population. Science 1987, 236, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Stefenon, V.M.; Gailing, O.; Finkeldey, R. The role of gene flow in shaping genetic structures of the subtropical conifer species Araucaria angustifolia. Plant Biol. 2008, 10, 356–364. [Google Scholar] [CrossRef]
- Lindgren, D.; Mullin, T.J. Relatedness and status number in seed orchard crops. Can. J. For. Res. 1998, 28, 276–283. [Google Scholar] [CrossRef]
- Crow, J.F.; Kimura, M. An Introduction to Population Genetic Theory; Blackburn Press: Caldwell, NJ, USA, 2009; pp. 345–364. ISBN 978-1-932846-12-6. [Google Scholar]
- Wu, H.X. Benefits and risks of using clones in forestry-a review. Scandinavian J. For. Res. 2018, 34, 352–359. [Google Scholar] [CrossRef]
- Lindgren, D.; El-Kassaby, Y. Genetic consequences of combining selective cone harvesting and genetic thinning in clonal seed orchards. Silvae Genet. 1989, 38, 65–70. [Google Scholar]
- Iwaizumi, M.; Kawai, Y.; Miyamoto, N.; Nasu, J.; Kubota, M.; Mukasyaf, A.A.; Tamura, M.; Watanabe, A. Evaluation of Genetic Diversity of Mother Trees and Seed Pool for Gene Conservation of A Pinus thunbergii Population. Jpn. For. Soc. Congr. 2020, 131. (In Japanese) [Google Scholar] [CrossRef]
- Jost, L.; Archer, F.; Flanagan, S.; Gaggiotti, O.; Hoban, S.; Latch, E. Differentiation measures for conservation genetics. Evol. Appl. 2018, 11, 1139–1148. [Google Scholar] [CrossRef]
- Johnson, G.R.; Sorensen, F.C.; St Clair, J.B.; Cronn, R.C. Pacific northwest forest tree seed zones-a template for native plants? Nativ. Plants J. 2004, 5, 131–140. [Google Scholar] [CrossRef]
- O’Brien, E.K.; Krauss, S.L. Testing the home-site advantage in forest trees on disturbed and undisturbed sites. Restor. Ecol. 2010, 18, 359–372. [Google Scholar] [CrossRef]
- Nagamitsu, T.; Shimada, K.; Kanazashi, A. A reciprocal transplant trial suggests a disadvantage of northward seed transfer in survival and growth of japanese red pine (Pinus densiflora) trees. Tree Genet. Genomes 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Adams, W.T.; Burczyk, J. Magnitude and implications of gene flow in gene conservation reserves. In Forest Conservation Genetics: Principles and Practice; CABI: Wallingford, UK, 2000; pp. 215–224. ISBN 0-643-06260-2. [Google Scholar]
- Jump, A.S.; Marchant, R.; Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 2009, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.J.; Underwood, N.; Vellen, M. Ecological consequences of genetic diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef] [PubMed]
- FFPRI. Variety of Pine Wood Nematode Resistant Tree Brochure; Forest Tree Breeding Center and Forest Bio-Research Center; Forest Research and Management Organization National Research and Development Agency: Tokyo, Japan, 2019. Available online: https://www.ffpri.affrc.go.jp/ftbc/business/sinhijnnsyu/teikousei.html (accessed on 21 April 2020). (In Japanese)
No | DBH Class Range (cm) | DBH Stump (cm) | Replication | Estimation of the Age (Years) | Sample (Trees) | |||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Mean | ||||
1 | 1–30 | 4 | 29 | 9 | 12 | 36 | 23 | 109 |
2 | 31–60 | 32 | 51 | 9 | 32 | 190 | 84 | 108 |
3 | 61–90 | 65 | 85 | 7 | 170 | 195 | 178 | 52 |
Total: | 269 |
Locus | Size Range (bp) | Na | Ne | AR | HO | HE | FIS | HWE |
---|---|---|---|---|---|---|---|---|
bcpt1075 | 141–201 | 18 | 5.62 | 7.42 | 0.85 | 0.82 | −0.03 | ns |
bcpt1671 | 162–225 | 22 | 5.79 | 8.25 | 0.82 | 0.83 | 0.01 | ns |
bcpt834 | 139–183 | 16 | 5.3 | 7.83 | 0.74 | 0.81 | 0.09 | * |
bcpt1823 | 128–169 | 15 | 5.71 | 7.51 | 0.62 | 0.82 | 0.25 | *** |
bcpt2532 | 128–190 | 29 | 7.83 | 11.49 | 0.57 | 0.87 | 0.35 | *** |
bcpt1549 | 93–130 | 14 | 3.18 | 5.75 | 0.67 | 0.69 | 0.03 | ns |
Mean | 19 | 5.57 | 8.04 | 0.71 | 0.81 | 0.12 |
Pop | Locus | PA | Pop | Locus | PA | Pop | Locus | PA | Pop | Locus | PA |
---|---|---|---|---|---|---|---|---|---|---|---|
Fukiage | bcpt1075 | 1 | Miyajima | bcpt1549 | 1 | Oki | bcpt2532 | 1 | Jusan | bcpt2532 | 1 |
Miyazaki | bcpt1075 | 1 | Kubokawa | bcpt1075 | 2 | Kaga | bcpt834 | 1 | Wakinosawa | bcpt2532 | 1 |
Karatsu | bcpt1075 | 1 | Imabari | bcpt2532 | 1 | Komatsu | bcpt1549 | 1 | |||
Iki-no-Matsubara (Fukuoka) | bcpt1671 | 3 | Tsuda | bcpt1075 | 1 | bcpt1075 | 1 | ||||
bcpt834 | 2 | Kaihu | bcpt834 | 1 | |||||||
bcpt1823 | 1 | bcpt1823 | 1 | ||||||||
bcpt2532 | 12 | Suzuka | bcpt834 | 2 |
Locus | Na | Ne | AR | HO | HE | FIS | HWE |
---|---|---|---|---|---|---|---|
bcpt1075 | 12 | 6.29 | 8.23 | 0.7 | 0.84 | 0.18 | ns |
bcpt1671 | 14 | 5.34 | 8.85 | 0.81 | 0.81 | 0.01 | ns |
bcpt834 | 9 | 3.88 | 6.05 | 0.67 | 0.74 | 0.1 | ns |
bcpt1823 | 9 | 3.77 | 6.14 | 0.51 | 0.73 | 0.31 | *** |
bcpt2532 | 14 | 7.07 | 10.06 | 0.51 | 0.86 | 0.41 | *** |
bcpt1549 | 7 | 2.86 | 4.84 | 0.63 | 0.65 | 0.05 | ns |
Mean | 10.83 | 4.87 | 7.36 | 0.64 | 0.77 | 0.18 | |
Overall Populations in Kyushu Area | 12.22 | 5.17 | 7.57 | 0.68 | 0.78 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukasyaf, A.A.; Matsunaga, K.; Tamura, M.; Iki, T.; Watanabe, A.; Iwaizumi, M.G. Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). Forests 2021, 12, 72. https://doi.org/10.3390/f12010072
Mukasyaf AA, Matsunaga K, Tamura M, Iki T, Watanabe A, Iwaizumi MG. Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). Forests. 2021; 12(1):72. https://doi.org/10.3390/f12010072
Chicago/Turabian StyleMukasyaf, Aziz Akbar, Koji Matsunaga, Miho Tamura, Taiichi Iki, Atsushi Watanabe, and Masakazu G. Iwaizumi. 2021. "Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan)" Forests 12, no. 1: 72. https://doi.org/10.3390/f12010072
APA StyleMukasyaf, A. A., Matsunaga, K., Tamura, M., Iki, T., Watanabe, A., & Iwaizumi, M. G. (2021). Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). Forests, 12(1), 72. https://doi.org/10.3390/f12010072