Effects of Soil Temperature, Water Content, Species, and Fertilization on Soil Respiration in Bamboo Forest in Subtropical China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Respiration Measurements
2.4. Soil Sampling and General Properties
2.5. Bamboo Biomass Measurements
2.6. Statistical Analyses
3. Results
3.1. Variation of the Monthly SR Rate and Annual SR
3.2. Statistical Results of the Monthly SR Rate Versus the ST and the SWC
3.3. PCCA Results of the Monthly SR Rate with Various Factors
3.4. Soil Properties and Bamboo Biomass on the Annual SR
4. Discussion
4.1. Effect of the ST and the SWC on the Monthly SR Rate
4.2. Quantitative Influences of Various Factors on the Monthly SR Rate
4.3. Effect of Fertilization, Bamboo Biomass, and Soil Properties on the Annual SR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob. Chang. Biol. 2001, 7, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.-R.; Concilio, A.; Chen, J.; North, M.; Ma, S. Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixed-conifer forest, California. For. Ecol. Manag. 2009, 257, 1324–1332. [Google Scholar] [CrossRef]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Boone, R.D.; Nadelhoffer, K.J.; Canary, J.D.; Kaye, J.P. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 1998, 396, 570–572. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Oyonarte, C.; Were, A.; Escribano, P.; Raimundo, J. Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biol. Biochem. 2011, 43, 393–403. [Google Scholar] [CrossRef]
- Abdalla, M.; Kumar, S.; Jones, M.; Burke, J.; Williams, M. Testing DNDC model for simulating soil respiration and assessing the effects of climate change on the CO2 gas flux from Irish agriculture. Glob. Planet. Chang. 2011, 78, 106–115. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Adams, D.E.; Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 1991, 351, 304–306. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, P.; Wang, H.; Zhou, G.; Wu, J.; Yang, F.; Qian, X. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. For. Ecol. Manag. 2011, 262, 1131–1137. [Google Scholar] [CrossRef]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Chang. Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.Y.; Zhang, J.G.; Yan, M.J.; Yamanaka, N.; Du, S. Seasonal and diurnal dynamics of soil respiration fluxes in two typical forests on the semiarid Loess Plateau of China: Temperature sensitivities of autotrophs and heterotrophs and analyses of integrated driving factors. Soil Biol. Biochem. 2012, 52, 99–107. [Google Scholar] [CrossRef]
- Tu, L.; Hu, T.; Zhang, J.; Li, X.; Hu, H.; Liu, L.; Xiao, Y. Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biol. Biochem. 2013, 58, 255–264. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Chang, S.X.; Jiang, P.; Zhou, G.; Zhang, J.; Liu, J. Responses of seasonal and diurnal soil CO2 effluxes to land-use change from paddy fields to Lei bamboo (Phyllostachys praecox) stands. Atmos. Environ. 2013, 77, 856–864. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Zha, T.; Luo, Z.; Zheng, J.; Sun, O.J. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biol. Biochem. 2013, 57, 135–143. [Google Scholar] [CrossRef]
- Sheng, H.; Yang, Y.; Yang, Z.; Chen, G.; Xie, J.; Guo, J.; Zou, S. The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biol. 2010, 16, 1107–1121. [Google Scholar] [CrossRef]
- Fu, J. Moso bamboo in China. ABS Mag. 2000, 21, 12–17. [Google Scholar]
- Scurlock, J.; Dayton, D.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhuang, S.; Sun, B.; Ji, H.; Li, C.; Zhou, S. Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter-age bivariate distribution model. Forestry 2014, 87, 674–682. [Google Scholar] [CrossRef] [Green Version]
- FAO/UNESCO. Soil Map of the World 1:5000000; UNESCO: Paris, France, 1974; Volume 1. [Google Scholar]
- Lu, R.K. Analytical Methods for Soil and Agricultural Chemistry; China Agricultural Science and Technology Publishing House: Beijing, China, 1999. [Google Scholar]
- Wang, M.; Li, Q.; Xiao, D.; Dong, B. Effects of soil temperature and soil water content on soil respiration in three forest types in Changbai Mountain. J. For. Res. 2004, 15, 113–118. [Google Scholar]
- Williams, L.R.; Bonner, T.H.; Hudson, J.D.; Williams, M.G.; Leavy, T.R.; Williams, C.S. Interactive effects of environmental variability and military training on stream biota of three headwater drainages in western Louisiana. T Am. Fish Soc. 2005, 134, 192–206. [Google Scholar] [CrossRef]
- Yang, Y.S.; Chen, G.S.; Guo, J.; Xie, J.; Wang, X. Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecol. 2007, 193, 71–84. [Google Scholar] [CrossRef]
- Li, Y.L.; Otieno, D.; Owen, K.; Zhang, Y.; Tenhunen, J.; Rao, X.Q.; Lin, Y.B. Temporal variability in soil CO2 emission in an orchard forest ecosystem. Pedosphere 2008, 18, 273–283. [Google Scholar] [CrossRef]
- Lellei-Kovács, E.; Kovács-Láng, E.; Botta-Dukát, Z.; Kalapos, T.; Emmet, B.; Beier, C. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur. J. Soil Biol. 2011, 47, 247–255. [Google Scholar] [CrossRef]
- González-Ubierna, S.; Lai, R. Modelling the effects of climate factors on soil respiration across Mediterranean ecosystems. J. Arid. Environ. 2019, 165, 46–54. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, W.; Zhu, W.; Gundersen, P.E.R.; Fang, Y.; Li, D.; Wang, H. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Chang. Biol. 2007, 14, 403–412. [Google Scholar] [CrossRef]
- Liski, J.; Ilvesniemi, H.; Makela, A.; Westman, C.J. CO2 emissions from soil in response to climatic warming are overestimated the decomposition of old soil organic matter is tolerant of temperature. Ambio 1999, 28, 171–174. [Google Scholar]
- Wagle, P.; Kakani, V.G. Confounding effects of soil moisture on the relationship between ecosystem respiration and soil temperature in switchgrass. BioEnergy Res. 2014, 7, 789–798. [Google Scholar] [CrossRef]
- Graf, A.; Weihermuller, L.; Huisman, J.A.; Herbst, M.; Bauer, J.; Vereecken, H. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences 2008, 5, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Morell, F.J.; Álvaro-Fuentes, J.; Lampurlanés, J.; Cantero-Martínez, C. Soil CO2 fluxes following tillage and rainfall events in a semiarid Mediterranean agroecosystem: Effects of tillage systems and nitrogen fertilization. Agric. Ecosyst. Environ. 2010, 139, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Shao, R.; Deng, L.; Yang, Q.; Shangguan, Z. Nitrogen fertilization increase soil carbon dioxide efflux of winter wheat field: A case study in Northwest China. Soil Till. Res. 2014, 143, 164–171. [Google Scholar] [CrossRef]
- Davidson, E.A.; Savage, K.; Bolstad, P.; Clark, D.A.; Curtis, P.S.; Ellsworth, D.S.; Hanson, P.J.; Law, B.E.; Luo, Y.; Pregitzer, K.S.; et al. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric. For. Meteorol. 2002, 113, 39–51. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl. Acad. Sci. USA 2006, 103, 10316–10321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.K.; Strahm, B.D.; Sucre, E.B. Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems. New For. 2015, 46, 167–193. [Google Scholar] [CrossRef]
- Bowden, R.D.; Nadelhoffer, K.J.; Boone, R.D.; Melillo, J.M.; Garrison, J.B. Contribution of aboveground litter, belowground litter, and root respiration total soil respiration in a temperate mixed hardwood forest. Can. J. For. Res. 1993, 23, 1402–1407. [Google Scholar] [CrossRef]
- Striegl, R.G.; Wickland, K.P. Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland. Can. J. For. Res. 1998, 28, 534–539. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, B.; Li, C.; Gao, M.; Wang, Y.; Zhou, Z.; Yuan, H. Dissecting soil CO2 fluxes from a subtropical forest in China by integrating field measurements with a modeling approach. Geoderma 2011, 161, 88–94. [Google Scholar] [CrossRef]
- Samuelson, L.; Mathew, R.; Stokes, T.; Feng, Y.; Aubrey, D.; Coleman, M. Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. For. Ecol. Manag. 2009, 258, 2431–2438. [Google Scholar] [CrossRef]
- Song, C.C.; Zhang, J.B. Effects of soil moisture, temperature, and nitrogen fertilization on soil respiration and nitrous oxide emission during maize growth period in northeast China. Acta Agric. Scand B-S P. 2009, 59, 97–106. [Google Scholar] [CrossRef]
- Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 2017, 151, 202–212. [Google Scholar] [CrossRef]
Stand Type/Management | Soil Organic Matter (g kg−1) | Soil pH | Bulk Density (g cm−3) | Sand (%) | Silt (%) | Clay (%) | Soil Texture | Culm Density (culm ha−1) | Diameter at Breast Height (cm) | Height (m) |
---|---|---|---|---|---|---|---|---|---|---|
PG | 6.95 ± 1.67 | 4.73 ± 0.09 | 1.31 ± 0.11 | 49.68 ± 2.49 | 36.90 ± 1.40 | 13.42 ± 1.26 | Loam | 253667 ± 3118 | 2.05 ± 0.26 | 4.70 ± 0.26 |
PP | 7.34 ± 1.24 | 4.51 ± 0.04 | 1.37 ± 0.06 | 50.27 ± 3.54 | 34.68 ± 1.79 | 15.05 ± 2.08 | Loam | 9567 ± 503 | 3.21 ± 0.21 | 4.93 ± 0.22 |
PPF | 7.89 ± 1.14 | 4.50 ± 0.02 | 1.28 ± 0.02 | 45,91 ± 1.39 | 37.29 ± 1.70 | 16.80 ± 0.82 | Loam | 9667 ± 651 | 3.40 ± 0.49 | 5.12 ± 0.33 |
Variable | Variance Inflation Factors (VIF) | P Value |
---|---|---|
Soil temperature | 1.35 | 0.001** |
Soil water content | 1.35 | 0.551 |
Bamboo type | 1.41 | 0.672 |
Fertilization | 1.39 | 0.909 |
Treatment | Soil Temperature | Soil Water Content | |
---|---|---|---|
Soil respiration | PG | 0.595 ** | −0.132 |
PP | 0.555 ** | −0.066 | |
PPF | 0.396 ** | −0.149 |
Model Type | Equation | R2 | ||
---|---|---|---|---|
PG | PP | PPF | ||
Univariate model | SR = a × ST+b | 0.354 | 0.308 | 0.157 |
SR = a × eb × ST | 0.320 | 0.275 | 0.148 | |
SR = a × STb | 0.373 | 0.326 | 0.167 | |
Bivariate model | SR = a × STb × SWCc | 0.412 | 0.435 | 0.196 |
SR = R0 × ea × ST × SWCb | 0.353 | 0.377 | 0.179 |
Time | Treatment | BD (g cm−3) | Soil pH | SOM (g kg−3) | TN (g kg−3) | TP (g kg−3) | TK (g kg−3) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|---|---|---|---|---|
20121019 | PG | 1.28 ± 0.11A | 4.67 ± 0.02A | 7.08 ± 1.02A | 0.53 ± 0.05A | 0.57 ± 0.10A | 20.50 ± 0.75A | 46.40 ± 2.63A | 39.45 ± 2.65A | 14.15 ± 0.70A |
PP | 1.26 ± 0.15A | 4.69 ± 0.08A | 8.80 ± 1.76A | 0.51 ± 0.07A | 0.59 ± 0.11A | 20.22 ± 1.46A | 43.23 ± 2.42A | 41.40 ± 3.50A | 15.37 ± 2.30A | |
PPF | 1.28 ± 0.02A | 4.60 ± 0.03A | 8.56 ± 1.69A | 0.58 ± 0.04A | 0.58 ± 0.07A | 19.85 ± 0.86A | 43.65 ± 3.86A | 39.93 ± 1.68A | 16.41 ± 2.31A | |
20131118 | PG | 1.57 ± 0.14a | 4.93 ± 0.06a | 6.53 ± 2.94a | 0.41 ± 0.06a | 0.52 ± 0.10a | 18.09 ± 0.68a | 42.59 ± 4.09a | 43.61 ± 3.37a | 13.80 ± 0.73a |
PP | 1.37 ± 0.06b | 4.80 ± 0.08b | 7.11 ± 2.73a | 0.51 ± 0.09a | 0.57 ± 0.12a | 18.44 ± 1.03a | 41.25 ± 4.77a | 42.91 ± 5.49a | 15.84 ± 1.18ab | |
PPF | 1.52 ± 0.06ab | 4.76 ± 0.05b | 7.63 ± 2.97a | 0.53 ± 0.15a | 0.67 ± 0.14a | 18.75 ± 1.63a | 40.72 ± 2.42a | 41.77 ± 1.50a | 17.51 ± 1.69b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Qian, Z.; Zhuang, S. Effects of Soil Temperature, Water Content, Species, and Fertilization on Soil Respiration in Bamboo Forest in Subtropical China. Forests 2020, 11, 99. https://doi.org/10.3390/f11010099
Zhang H, Qian Z, Zhuang S. Effects of Soil Temperature, Water Content, Species, and Fertilization on Soil Respiration in Bamboo Forest in Subtropical China. Forests. 2020; 11(1):99. https://doi.org/10.3390/f11010099
Chicago/Turabian StyleZhang, Houxi, Zhuangzhuang Qian, and Shunyao Zhuang. 2020. "Effects of Soil Temperature, Water Content, Species, and Fertilization on Soil Respiration in Bamboo Forest in Subtropical China" Forests 11, no. 1: 99. https://doi.org/10.3390/f11010099
APA StyleZhang, H., Qian, Z., & Zhuang, S. (2020). Effects of Soil Temperature, Water Content, Species, and Fertilization on Soil Respiration in Bamboo Forest in Subtropical China. Forests, 11(1), 99. https://doi.org/10.3390/f11010099