Burks, J.H.; Hartogensis, W.; Dilchert, S.; Mason, A.E.; Smarr, B.L.
Multiscale Average Absolute Difference (MSAAD): A Computationally Efficient and Nonparametric Adaptation of Line Length for Noisy, Uncontrolled Wearables Time Series. Algorithms 2025, 18, 577.
https://doi.org/10.3390/a18090577
AMA Style
Burks JH, Hartogensis W, Dilchert S, Mason AE, Smarr BL.
Multiscale Average Absolute Difference (MSAAD): A Computationally Efficient and Nonparametric Adaptation of Line Length for Noisy, Uncontrolled Wearables Time Series. Algorithms. 2025; 18(9):577.
https://doi.org/10.3390/a18090577
Chicago/Turabian Style
Burks, Jamison H., Wendy Hartogensis, Stephan Dilchert, Ashley E. Mason, and Benjamin L. Smarr.
2025. "Multiscale Average Absolute Difference (MSAAD): A Computationally Efficient and Nonparametric Adaptation of Line Length for Noisy, Uncontrolled Wearables Time Series" Algorithms 18, no. 9: 577.
https://doi.org/10.3390/a18090577
APA Style
Burks, J. H., Hartogensis, W., Dilchert, S., Mason, A. E., & Smarr, B. L.
(2025). Multiscale Average Absolute Difference (MSAAD): A Computationally Efficient and Nonparametric Adaptation of Line Length for Noisy, Uncontrolled Wearables Time Series. Algorithms, 18(9), 577.
https://doi.org/10.3390/a18090577