Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon
Abstract
:1. Introduction
2. Results and Discussion
Sample | Etching time (min) | |||||
---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 60 | 70 | |
PSi | 0.693 | 0.580 | 0.563 | 0.553 | 0.522 | 0.505 |
Au/PSi | 0.710 | 0.644 | 0.609 | 0.596 | 0.564 | 0.551 |
Au/PSi (at T = 300 °C) | 0.581 | 0.528 | 0.511 | 0.501 | 0.479 | 0.474 |
Au/PSi (at T = 400 °C) | 0.559 | 0.510 | 0.503 | 0.491 | 0.478 | 0.468 |
Au/PSi (at T = 600 °C) | 0.526 | 0.490 | 0.480 | 0.466 | 0.450 | 0.438 |
Au/PSi (at T = 800 °C) | 0.513 | 0.477 | 0.464 | 0.451 | 0.424 | 0.419 |
3. Experimental Section
3.1. Sample Preparation
3.2. Characterisation
4. Conclusions
Acknowledgments
References
- Boit, C.; Lau, F.; Sittig, R. Gold diffusion in silicon by rapid optical annealing. Appl. Phys. A 1990, 50, 197–205. [Google Scholar] [CrossRef]
- Morooka, M. Growth and shrinkage of stacking faults by gold diffusion in silicon. J. Mater. Sci. 1996, 7, 221–225. [Google Scholar]
- Marchal, G.; Mangin, P.; Janot, C. Crystallization of AuxSi1−x amorphous alloys. Philos. Mag. Part B 1980, 42, 81–94. [Google Scholar] [CrossRef]
- Tsaur, B.Y.; Mayer, J.W. Metastable Au-Si alloy formation induced by ion-beam interface mixing. Philos. Mag. A 1981, 43, 345–361. [Google Scholar] [CrossRef]
- Kambli, U.; Allmen, M.; Saunders, N.; Miodownik, A. A comparison of glass forming ability in Ag-Si and Au-Si alloys. Appl. Phys. A 1985, 36, 189–192. [Google Scholar] [CrossRef]
- Calliari, L.; Sancrotti, M.; Braicovich, L. Agglomeration at Si/Au interfaces: A study with spatially resolved Auger line-shape spectroscopy. Phys. Rev. B 1984, 30, 4885–4887. [Google Scholar] [CrossRef]
- Chen, C.R.; Chen, L.J. Morphological evolution of the low-temperature oxidation of silicon with a gold overlayer. J. Appl. Phys. 1995, 78, 919–925. [Google Scholar] [CrossRef]
- Aliyu, Y.H.; Morgan, D.V.; Thomas, H.; Bland, S.W. AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO). Electron. Lett. 1995, 31, 1691–1692. [Google Scholar] [CrossRef]
- Charrier, J.; Guendouz, M.; Haji, L.; Joubert, P. Porosity gradient resulting from localised formation of porous silicon: The effect on waveguiding. Phys. Status Solidi A 2000, 182, 431–436. [Google Scholar] [CrossRef]
- Amin-Chalhoub, E.; Semmar, N.; Coudron, L.; Gautier, G.; Boulmer-Leborgne, C.; Petit, A.; Gaillard, M.; Mathias, J.; Millon, E. Thermal conductivity measurement of porous silicon by the pulsed-photothermal method. J. Phys. D 2011, 44, 1–8. [Google Scholar] [CrossRef]
- Nahor, A.; Berger, O.; Bardavid, Y.; Toker, G.; Tamar, Y.; Reiss, L.; Asscher, M.; Yitzchaik, S.; Sa’ar, A. Hybrid structures of porous silicon and conjugated polymers for photovoltaic applications. Phys. Status Solidi C 2011, 8, 1908–1912. [Google Scholar] [CrossRef]
- Rea, I.; Iodice, M.; Coppola, G.; Rendina, I.; Marino, A.; de Stefano, L. A porous silicon-based Bragg grating waveguide sensor for chemical monitoring. Sens. Actuators B 2009, 139, 39–43. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, Y.F. Strong and stable visible luminescence from Au-passivated porous silicon. Appl. Phys. Lett. 1999, 75, 2560–2562. [Google Scholar] [CrossRef]
- Mimura, H.; Miyajima, K.; Yokoo, K. Electron emission from porous silicon planar emitters. In Papers from the 14th International Vacuum Microelectronics Conference (IVMC2002) and The 48th International Field Emission Symposium (IFES); AVS: Lyon, France, 2003. [Google Scholar]
- Laiho, R.; Pavlov, A. Electronic properties and Schottky barrier of the porous silicon—Au interface. Thin Solid Films 1995, 255, 276–278. [Google Scholar] [CrossRef]
- Hong, C.; Kim, H.; Park, S.; Lee, C. Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering. J. Eur. Ceram. Soc. 2010, 30, 459–463. [Google Scholar] [CrossRef]
- Adachi, T. Eutectic reaction of gold thin-films deposited on silicon surface. Surf. Sci. 2002, 506, 305–312. [Google Scholar] [CrossRef]
- Bisi, O.; Ossicini, S.; Pavesi, L. Porous silicon: A quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 2000, 38, 1–126. [Google Scholar] [CrossRef]
- Chan, K.; Aspanut, Z.; Goh, B.; Sow, C.; Varghese, B.; Rahman, S.; Abdul Muhamad, M. Effects of post-thermal annealing temperature on the optical and structural properties of gold particles on silicon suboxide films. Appl. Surf. Sci. 2011, 257, 2208–2213. [Google Scholar] [CrossRef]
- Yu, G.Q.; Tay, B. K.; Zhao, Z. W.; Sun, X.W.; Fu, Y.Q. Ion beam co-sputtering deposition of Au/SiO2 nanocomposites. Phys. E 2005, 27, 362–368. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 47, 64–69. [Google Scholar] [CrossRef]
- Lima, J.C.D.; Schmitt, M.; Grandi, T.A.; Campos, C.E.M.; Holn, H. Structural and photoacoustic studies of mechanically alloyed Ga40Sb38Se22 powder. J. Phys. 2007, 19, 1–10. [Google Scholar]
- Ramachandran, E.; Raji, P.; Ramachandran, K.; Natarajan, S. Photoacoustic study of the thermal properties of calcium carbonate—The major constituent of pancreatic calculi. Cryst. Res. Technol. 2006, 41, 64–67. [Google Scholar] [CrossRef]
- Sheng, C.K.; Mahmood Mat Yunus, W.; Yunus, W.; Abidin Talib, Z.; Kassim, A. Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique. Phys. B 2008, 403, 2634–2638. [Google Scholar] [CrossRef] [Green Version]
- Pinto Neto, A.; Vargas, H.; Leite, N.F.; Miranda, L.C.M. Photoacoustic characterization of semiconductors: Transport properties and thermal diffusivity in GaAs and Si. Phys. Rev. B 1990, 41, 9971–9979. [Google Scholar] [CrossRef]
- Shen, Q.; Toyoda, T. Characterization of thermal properties of porous silicon film/silicon using photoacoustic technique. J. Therm. Anal. Calorim. 2002, 69, 1067–1073. [Google Scholar] [CrossRef]
- Calderon, A.; Munoz Hernandez, R.A.; Tomas, S.A. Method for measurement of thermal diffusivity in solids: Appliction to metals, semiconductors and thin materials. Appl. Phys. 1998, 84, 6327–6329. [Google Scholar] [CrossRef]
- Srinivasan, R.; Jayachandran, M.; Ramachandran, K. Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations. Cryst. Res. Technol. 2007, 42, 266–274. [Google Scholar] [CrossRef]
- Zou, J.; Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 2001, 89, 2932–2938. [Google Scholar] [CrossRef]
© 2012 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Behzad, K.; Mat Yunus, W.M.; Talib, Z.A.; Zakaria, A.; Bahrami, A. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon. Materials 2012, 5, 157-168. https://doi.org/10.3390/ma5010157
Behzad K, Mat Yunus WM, Talib ZA, Zakaria A, Bahrami A. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon. Materials. 2012; 5(1):157-168. https://doi.org/10.3390/ma5010157
Chicago/Turabian StyleBehzad, Kasra, Wan Mahmood Mat Yunus, Zainal Abidin Talib, Azmi Zakaria, and Afarin Bahrami. 2012. "Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon" Materials 5, no. 1: 157-168. https://doi.org/10.3390/ma5010157