Picosecond Laser Direct Writing of Micro-Nano Structures on Flexible Thin Film for X-Band Transmittance Function
Highlights
- Ultrafast laser direct writing of the composite flexible thin films was studied.
- The fabrication of artificial microstructures was investigated.
- The X-band transmittance of the flexible thin films was analyzed.
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Film Thickness and Elements
3.2. Influence of Laser Parameters on Material Surface Morphology
3.3. Microstructure Analysis of Samples with Different Micro-Nano Structures
3.4. Analysis of Wave Transmittance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Wu, Y.; Zheng, H. Research Progress of Surface Micro/Nano Structures Preparation Methods and Their Special Properties. Mater. Prot. 2023, 56, 30. [Google Scholar] [CrossRef]
- Xiang, H.; Wu, L.; Zhao, D.; Ma, G.; Zeng, G. Analysis of effect of surface micro-nano structure on transmission performance of light. Opt. Technol. 2020, 46, 404–409. [Google Scholar] [CrossRef]
- Xie, J.W.; Yan, J.F.; Zhu, D.Z.; He, G.Z. Atomic-Level Insight into the Formation of Subsurface Dislocation Layer and Its Effect on Mechanical Properties During Ultrafast Laser Micro/Nano Fabrication. Adv. Funct. Mater. 2022, 32, 2108802. [Google Scholar] [CrossRef]
- Guo, N.; Sun, J.M.; Li, Y.L.; Lv, X.Y.; Gao, J.G.; He, M.P.; Zhang, Y. Nonlinear Surface Conductivity Characteristics of Epoxy Resin-Based Micro-Nano Structured Composites. Energies 2022, 15, 5374. [Google Scholar] [CrossRef]
- Ma, Y.X.; Jin, P.S.; Lei, W.J.; La, P.Q.; Du, X.Y.; Zhang, D.J. One-pot method fabrication of superparamagnetic sulfonated polystyrene/Fe3O4/graphene oxide micro-nano composites. J. Porous Mater. 2018, 25, 1447–1453. [Google Scholar] [CrossRef]
- Zhu, P.; Xiao, L.; Sun, T.; Shi, H. Research progress of micro-nano structures enhanced infrared detectors (Invited). Infrared Laser Eng. 2022, 51, 2–8. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Guo, W.; Xing, Z.; Huang, Y.; Wang, H. Research Progress on the Preparation of Infrared Anti-reflection Micro-Nano Structure by Etching Process. Mater. Rev. 2024, 38, 162–171. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, G.Y.; Shen, M.X. Research Progress on the Effect of Surface Micro-nano Structure and Chemical Modification on Wettability. China Surf. Eng. 2023, 36, 52–75. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Ling, J.; Gu, N. Effects of Micro/Nano Patterned Surfaces on Cell Behaviors. J. Instrum. Anal. 2022, 41, 529–535. [Google Scholar] [CrossRef]
- Zhao, R.; Mao, F.; Qian, H.; Yang, X.; Zhu, X.D.; Zhang, X.D. Micro-/Nano-structured Biomaterials for Bone Regeneration: New Progress. J. Inorg. Mater. 2023, 38, 750–762. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, W.H.; Chen, M.G.; Du, H.C.; Qin, T. Synergistic fabrication of micro-nano bioactive ceramic-optimized polymer scaffolds for bone tissue engineering by in situ hydrothermal deposition and selective laser sintering. J. Biomater. Sci.-Polym. Ed. 2022, 33, 2104–2123. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhi, W.B.; Jia, Q.; Zhou, B.Y.; Shao, W.; Guo, X.Y.; Zhou, Z.; He, D.Y. Lotus leaf inspired hierarchical micro-nano structure on NdYbZr2O7 ceramic pellet with enhanced volcanic ash repellence. Ceram. Int. 2024, 50, 27563–27572. [Google Scholar] [CrossRef]
- Mei, H.; Wang, C.; Yang, G. Experimental study on superhydrophobic surface fabrication by microsecond laser and frost suppression performance. Laser Infrared 2022, 52, 1468–1473. [Google Scholar] [CrossRef]
- Jia, G.J.; Chen, G.X.; Zhang, L.; Cui, J.F.; Duan, B.C.; Zhuang, B.X.; Li, Y.T.; Lu, H.M.; Jiang, N.; Nishimura, K.; et al. Study of amorphous layer on CVD diamond surface induced by Ga ion implantation in focused ion beam processing. Diam. Relat. Mater. 2024, 145, 111108. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, T.L.; Xi, S.; Liu, D.; Tang, Z.R.; Li, X.P.; Lai, W.X. Carbon nanotube integrated 3-dimensional carbon microelectrode array by modified SU-8 photoresist photolithography and pyrolysis. Thin Solid Film. 2011, 520, 1041–1047. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, Z.L.; Bi, Q.; Xi, Y.X.; Liu, W.G. Fabrication and Performance Analysis of Subwavelength Multifunctional Micro-nanostructures. Acta Photonica Sin. 2023, 52, 0623002. [Google Scholar] [CrossRef]
- Chen, G.N.; Gallo, E.M.; Burger, J.; Nabet, B.; Cola, A.; Prete, P.; Lovergine, N.; Spanier, J.E. On direct-writing methods for electrically contacting GaAs and Ge nanowire devices. Appl. Phys. Lett. 2010, 96, 223107. [Google Scholar] [CrossRef]
- Wang, S.; Dong, S.; Yan, S.; Liu, X. Fabrication of Micro/Nano Structures on Metal Surfaces by Femtosecond Laser and Its Technical Applications. Laser Optoelectron. Prog. 2023, 60, 1700005. [Google Scholar] [CrossRef]
- Lorusso, A.; Nassisi, V.; Congedo, G.; Lovergine, N.; Velardi, L.; Prete, P. Pulsed plasma ion source to create Si nanocrystals in SiO2 substrates. Appl. Surf. Sci. 2009, 225, 5401–5404. [Google Scholar] [CrossRef]
- Stefan, N.; Mulenko, S.A.; Skoryk, M.A.; Popov, V.M.; Smirnov, A.B. Influence of hybrid Fe/Cr parameters structures synthesised with laser radiation on their photosensitivity. J. Mater. Sci. Mater. Electron. 2023, 34, 1830. [Google Scholar] [CrossRef]
- Wu, L.Y.; Qiu, L.C.; Zeng, F.F.; Lu, Q.; Zhu, J.F.; Chen, L.Y.; Yin, L.; Li, K.; Du, Y. Influence of deposition pressure on the microstructure and mechanical properties of CVD TiAlSiN coatings. Surf. Coat. Technol. 2023, 466, 129605. [Google Scholar] [CrossRef]
- Zhu, J.F.; Zhang, L.; Li, K.; Du, Y.; Yin, L.; Cheng, W.; Zhong, Z.Q. MT-CVD Ti(C,N,O) coatings controlled by CO: Microstructure evolution and its effect on the hardness. Surf. Coat. Technol. 2023, 475, 130138. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Yan, Z.X.; Zhang, K.; Zhou, W.Y.; Ou, Z.Y.; Lv, X.L.; He, Y.; Yuan, W.Z. Bioinspired drag reduction surfaces via triple lithography method based on three-layer hybrid masks. J. Micromechanics Microengineering 2022, 32, 055006. [Google Scholar] [CrossRef]
- Kagawa, G.; Takahashi, H. Liquid-Immersion Inclined-Rotated UV Lithography for Micro Suction Cup Array. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 610–612. [Google Scholar] [CrossRef]
- Syu, Y.S.; Huang, Y.B.; Jiang, M.Z.; Wu, C.Y.; Lee, Y.C. Maskless lithography for large area patterning of three-dimensional microstructures with application on a light guiding plate. Opt. Express 2023, 31, 12232–12248. [Google Scholar] [CrossRef] [PubMed]
- Li, R.X.; Cheng, Y.; Leng, Y.X.; Zeng, Z.N.; Yao, J.P.; Zeng, B.; Li, G.H.; Zhang, Z.X.; Xu, Z.Z. Frontiers in ultrafast optics and ultra-intense laser technology. Sci. Sin. Informationis 2016, 46, 1236–1254. [Google Scholar] [CrossRef]
- Long, Y.; Chen, X.; Jiang, J.; Ji, C.; Feng, S.; Wang, C. Research Progress of Ultrafast Laser Ceramic Polishing and Texturing Technology. Aeronaut. Manuf. Technol. 2022, 65, 50. [Google Scholar] [CrossRef]
- Guo, H.; Xie, J.W.; He, G.Z.; Zhu, D.Z.; Qiao, M.; Yan, J.F.; Yu, J.C.; Li, J.Q.; Zhao, Y.Z.; Luo, M.; et al. A review of ultrafast laser micro/nano fabrication: Material processing, surface/interface controlling, and devices fabrication. Nano Res. 2024, 17, 6212–6230. [Google Scholar] [CrossRef]
- Nas, S.I.; Gedvilas, M. Control of the wetting properties of stainless steel by ultrashort laser texturing using multi-parallel beam processing. Opt. Laser Technol. 2022, 153, 108187. [Google Scholar] [CrossRef]
- Moldovan, E.R.; Doria, C.C.; Ocaña, J.L.; Istrate, B.; Cimpoesu, N.; Baltes, L.S.; Stanciu, E.M.; Croitoru, C.; Pascu, A.; Munteanu, C.; et al. Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel. Materials 2022, 15, 4580. [Google Scholar] [CrossRef]
- Soltani-Kordshuli, F.; Miller, C.; Harris, N.; Zou, M. Laser surface texturing of both thin polytetrafluoroethylene coatings and stainless steel substrates for improving tribological properties. Polym. Test. 2023, 117, 107852. [Google Scholar] [CrossRef]
- Ou, Y.; Li, C.; Qian, J.; Xiao, Y.; Li, S.; Feng, Z. Fabrication of hexagonal microstructure on gallium nitride films by wet etching assisted femtosecond laser ablation. Opt. Commun. 2023, 528, 128952. [Google Scholar] [CrossRef]
- Amsellem, W.; Sarvestani, H.Y.; Pankov, V.; Martinez-Rubi, Y.; Gholipour, J.; Ashrafi, B. Deep precision machining of SiC ceramics by picosecond laser ablation. Ceram. Int. 2023, 49, 9592–9606. [Google Scholar] [CrossRef]
- Liu, J.H.; Luo, Z.C.; Zhang, Z.X.; Yang, Y.T.; Wu, D.X.; Liu, M.; Luo, A.P.; Xu, W.C. Recent Progress of Ultrafast Fiber Lasers Based on Active Light Field Modulation (Invited). Laser Optoelectron. Prog. 2024, 61, 270–286. [Google Scholar] [CrossRef]
- Keshavarz, M.; Tan, B.; Venkatakrishnan, K. Functionalized stress component onto bio-template as a pathway of cytocompatibility. Sci. Rep. 2016, 6, 35425. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Jiang, K.; Zhao, J.; Fang, J. Effect of laser processing parameters on the surface quality of spherical Frequency Selective Surface. J. Terahertz Sci. Electron. Inf. Technol. 2019, 17, 647–652. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Spot diameter | μm | 50 |
Pulse width | ps | 14 |
Scanning speed | mm/s | 1000 |
Jump speed | mm/s | 1000 |
Laser power | W | 1–9 |
Laser frequency | KHz | 50–200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Zhou, J.; Xu, C.; Yang, B.; Tian, Z.; Liu, H.; Zhang, Y.; Sun, Z.; Peng, X.; Tian, Y. Picosecond Laser Direct Writing of Micro-Nano Structures on Flexible Thin Film for X-Band Transmittance Function. Materials 2025, 18, 403. https://doi.org/10.3390/ma18020403
Feng J, Zhou J, Xu C, Yang B, Tian Z, Liu H, Zhang Y, Sun Z, Peng X, Tian Y. Picosecond Laser Direct Writing of Micro-Nano Structures on Flexible Thin Film for X-Band Transmittance Function. Materials. 2025; 18(2):403. https://doi.org/10.3390/ma18020403
Chicago/Turabian StyleFeng, Jiecai, Jin Zhou, Cuilian Xu, Bingdong Yang, Ze Tian, Hongfei Liu, Yilian Zhang, Zhenghao Sun, Xiaohai Peng, and Yingzhong Tian. 2025. "Picosecond Laser Direct Writing of Micro-Nano Structures on Flexible Thin Film for X-Band Transmittance Function" Materials 18, no. 2: 403. https://doi.org/10.3390/ma18020403
APA StyleFeng, J., Zhou, J., Xu, C., Yang, B., Tian, Z., Liu, H., Zhang, Y., Sun, Z., Peng, X., & Tian, Y. (2025). Picosecond Laser Direct Writing of Micro-Nano Structures on Flexible Thin Film for X-Band Transmittance Function. Materials, 18(2), 403. https://doi.org/10.3390/ma18020403