Recovery of Cerium Salts from Sewage Sludge Resulting from the Coagulation of Brewery Wastewater with Recycled Cerium Coagulant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. Extraction of Cerium and Phosphorus
2.4. Precipitation of Solid Cerium(III) Compounds
2.5. Removal of Metals from a Phosphorus-Rich Solution
3. Results and Discussion
3.1. Extraction of Cerium and Phosphate from Sewage Sludge
3.2. Preparation of Cerium Compounds
3.3. Removal of Metals from a Phosphorus-Rich Solution and the Possible Directions of Its Processing and Application
3.4. Potential Application of the Precipitates and Post-Reaction Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCD | Central composite design |
COD | Chemical oxygen demand |
IC | Ion chromatography |
ICP-MS | Inductively coupled plasma mass spectrometry |
ICP-OES | Inductively coupled plasma optical emission spectrometry |
RSM | Response surface methodology |
Total P | Total phosphorus as P |
References
- Rzymski, P.; Klimaszyk, P.; Marszelewski, W.; Borowiak, D.; Mleczek, M.; Nowiński, K.; Pius, B.; Niedzielski, P.; Poniedziałek, B. The Chemistry and Toxicity of Discharge Waters from Copper Mine Tailing Impoundment in the Valley of the Apuseni Mountains in Romania. Environ. Sci. Pollut. Res. 2017, 24, 21445–21458. [Google Scholar] [CrossRef]
- Thomas, M.; Białecka, B.; Zdebik, D. Removal of Copper, Nickel and Tin from Model and Real Industrial Wastewater Using Sodium Trithiocarbonate: The Negative Impact of Complexing Compounds. Arch. Environ. Prot. 2018, 44, 33–47. [Google Scholar]
- Thomas, M.; Kozik, V.; Bąk, A.; Barbusiński, K.; Jazowiecka-Rakus, J.; Jampilek, J. Removal of Heavy Metal Ions from Wastewaters: An Application of Sodium Trithiocarbonate and Wastewater Toxicity Assessment. Materials 2021, 14, 655. [Google Scholar] [CrossRef]
- Saxena, G.; Chandra, R.; Bharagava, R.N. Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In Reviews of Environmental Contamination and Toxicology: Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2016; Volume 240, pp. 31–69. [Google Scholar]
- García-Valero, A.; Martínez-Martínez, S.; Faz, Á.; Terrero, M.A.; Muñoz, M.Á.; Gómez-López, M.D.; Acosta, J.A. Treatment of Wastewater from the Tannery Industry in a Constructed Wetland Planted with Phragmites Australis. Agronomy 2020, 10, 176. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Q.; Tang, Y.; Zhou, J.; Guo, H. Tannery Wastewater Treatment: Conventional and Promising Processes, an Updated 20-Year Review. J. Leather Sci. Eng. 2022, 4, 10. [Google Scholar] [CrossRef]
- Simate, G.S.; Cluett, J.; Iyuke, S.E.; Musapatika, E.T.; Ndlovu, S.; Walubita, L.F.; Alvarez, A.E. The Treatment of Brewery Wastewater for Reuse: State of the Art. Desalination 2011, 273, 235–247. [Google Scholar] [CrossRef]
- Enitan, A.M.; Adeyemo, J.; Kumari, S.K.; Swalaha, F.M.; Bux, F. Characterization of Brewery Wastewater Composition. Int. J. Environ. Ecol. Eng. 2015, 9, 1073–1076. [Google Scholar] [CrossRef]
- Lejwoda, P.; Białecka, B.; Thomas, M. Removal of Phosphate from Brewery Wastewater by Cerium(III) Chloride Originating from Spent Polishing Agent: Recovery and Optimization Studies. Sci. Total Environ. 2023, 875, 162643. [Google Scholar] [CrossRef]
- Kaur, N. Different Treatment Techniques of Dairy Wastewater. Groundw. Sustain. Dev. 2021, 14, 100640. [Google Scholar] [CrossRef]
- Sirianuntapiboon, S.; Jeeyachok, N.; Larplai, R. Sequencing Batch Reactor Biofilm System for Treatment of Milk Industry Wastewater. J. Environ. Manag. 2005, 76, 177–183. [Google Scholar] [CrossRef]
- Ahmad, S.; Mahmoud, T.A. Wastewater from a Sugar Refining Industry. Water Res. 1982, 16, 345–355. [Google Scholar] [CrossRef]
- Singh, P.K.; Tripathi, M.; Singh, R.P.; Singh, P. Treatment and recycling of wastewater from sugar mill. In Advances in Biological Treatment of Industrial Waste Water and Their Recycling for a Sustainable Future; Springer: Singapore, 2019; pp. 199–223. [Google Scholar]
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef]
- Kwapinski, W.; Kolinovic, I.; Leahy, J.J. Sewage Sludge Thermal Treatment Technologies with a Focus on Phosphorus Recovery: A Review. Waste Biomass Valorization 2021, 12, 5837–5852. [Google Scholar] [CrossRef]
- Tan, Z.; Lagerkvist, A. Phosphorus Recovery from the Biomass Ash: A Review. Renew. Sustain. Energy Rev. 2011, 15, 3588–3602. [Google Scholar] [CrossRef]
- Caravelli, A.H.; Contreras, E.M.; Zaritzky, N.E. Phosphorous Removal in Batch Systems Using Ferric Chloride in the Presence of Activated Sludges. J. Hazard. Mater. 2010, 177, 199–208. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, X.-H.; Liu, Z.; Cui, L.; Yu, A.; Feng, Q.; Yang, H. Enhanced Coagulation of Ferric Chloride Aided by Tannic Acid for Phosphorus Removal from Wastewater. Chemosphere 2008, 72, 290–298. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Lu, J.; Zhao, X. Comparison of Three Aluminum Coagulants for Phosphorus Removal. J. Water Resour. Prot. 2014, 06, 902–908. [Google Scholar] [CrossRef]
- Więckol-Ryk, A.; Thomas, M.; Białecka, B. Solid Peroxy Compounds as Additives to Organic Waste for Reclamation of Post-Industrial Contaminated Soils. Materials 2021, 14, 6979. [Google Scholar] [CrossRef]
- Jaffer, Y.; Clark, T.A.; Pearce, P.; Parsons, S.A. Potential Phosphorus Recovery by Struvite Formation. Water Res. 2002, 36, 1834–1842. [Google Scholar] [CrossRef]
- Cieślik, B.; Konieczka, P. A Review of Phosphorus Recovery Methods at Various Steps of Wastewater Treatment and Sewage Sludge Management. The Concept of “No Solid Waste Generation” and Analytical Methods. J. Clean. Prod. 2017, 142, 1728–1740. [Google Scholar] [CrossRef]
- Dahle, J.; Arai, Y. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. Int. J. Environ. Res. Public Health 2015, 12, 1253–1278. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.H.; Kim, K.-H. Rare Earth Precipitation and Coprecipitation Behavior: The Limiting Role of PO43− on Dissolved Rare Earth Concentrations in Seawater. Geochim. Cosmochim. Acta 1993, 57, 519–526. [Google Scholar] [CrossRef]
- Liu, X.; Byrne, R.H. Rare Earth and Yttrium Phosphate Solubilities in Aqueous Solution. Geochim. Cosmochim. Acta 1997, 61, 1625–1633. [Google Scholar] [CrossRef]
- Kragten, J. Hydroxide Complexes of Cerium(III). Talanta 1978, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Kury, J.W. Problems in the Aqueous Chemistry of Cerium(III) Fluoride and Lanthanum(III) Fluoride (Thesis); U.S. Atomic Energy Commission: Washington, DC, USA, 1953. [Google Scholar]
- Ferri, D.; Grenthe, I.; Hietanen, S.; Salvatore, F.; Powell, D.L.; Suchi, R. Studies on Metal Carbonate Equilibria. 5. The Cerium(III) Carbonate Complexes in Aqueous Perchlorate Media. Acta Chem. Scand. 1983, 37, 359–365. [Google Scholar] [CrossRef]
- Rodríguez-Ruiz, I.; Teychené, S.; Vitry, Y.; Biscans, B.; Charton, S. Thermodynamic Modeling of Neodymium and Cerium Oxalates Reactive Precipitation in Concentrated Nitric Acid Media. Chem. Eng. Sci. 2018, 183, 20–25. [Google Scholar] [CrossRef]
- Crouthamel, C.E.; Martin, D.S. Solubility of the Rare Earth Oxalates and Complex Ion Formation in Oxalate Solution. II. Neodymium and Cerium(III)1. J. Am. Chem. Soc. 1951, 73, 569–573. [Google Scholar] [CrossRef]
- Kajjumba, G.W.; Fischer, D.; Risso, L.A.; Koury, D.; Marti, E.J. Application of Cerium and Lanthanum Coagulants in Wastewater Treatment—A Comparative Assessment to Magnesium, Aluminum, and Iron Coagulants. Chem. Eng. J. 2021, 426, 131268. [Google Scholar] [CrossRef]
- ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). ISO: Geneva, Switzerland, 2007.
- EN ISO 17294-2:2016; Water Quality — Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) — Part 2: Determination of Selected Elements Including Uranium Isotopes (ISO 17294-2:2016). ISO: Geneva, Switzerland, 2016.
- EN ISO 10304-1:2009; Water Quality - Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate (ISO 10304-1:2007). ISO: Geneva, Switzerland, 2009.
- EN ISO 10523:2012; Water Quality—Determination of pH (ISO 10523:2008). ISO: Geneva, Switzerland, 2012.
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Aslan, N. Application of Response Surface Methodology and Central Composite Rotatable Design for Modeling and Optimization of a Multi-Gravity Separator for Chromite Concentration. Powder Technol. 2008, 185, 80–86. [Google Scholar] [CrossRef]
- Kokare, M.B.; Ranjani, V.; Mathpati, C.S. Response Surface Optimization, Kinetic Study and Process Design of n-Butyl Levulinate Synthesis. Chem. Eng. Res. Des. 2018, 137, 577–588. [Google Scholar] [CrossRef]
- Bu, X.; Xie, G.; Peng, Y.; Chen, Y. Kinetic Modeling and Optimization of Flotation Process in a Cyclonic Microbubble Flotation Column Using Composite Central Design Methodology. Int. J. Miner. Process. 2016, 157, 175–183. [Google Scholar] [CrossRef]
- Żelazny, S.; Świnder, H.; Białecka, B.; Jarosiński, A. Odzysk Pierwiastków Ziem Rzadkich z Popiołów Lotnych. Cz. II. Wytrącanie z Roztworu. Przemysł Chem. 2017, 1, 102–108. [Google Scholar] [CrossRef]
- Chen, F.; Liu, F.; Wang, L.; Wang, J. Comparison of the Preparation Process of Rare Earth Oxides from the Water Leaching Solution of Waste Nd-Fe-B Magnets’ Sulfate Roasting Products. Processes 2022, 10, 2310. [Google Scholar] [CrossRef]
- Lopez, H.F.; Mendoza, H. Temperature Effects on the Crystallization and Coarsening of Nano-CeO2 Powders. ISRN Nanomater 2013, 2013, 208614. [Google Scholar] [CrossRef]
- Poscher, A.; Luidold, S.; Schnideritsch, H.; Antrekowitsch, H. Extraction of Lanthanides from Spent Polishing Agent. In Proceedings of the 1st European Rare Earth Resources Conference (ERES 2014), Milos, Greece, 4–7 September 2014; pp. 209–222. [Google Scholar]
- Thomas, M.; Białecka, B.; Zdebik, D. Use of Sodium Trithiocarbonate for Remove of Chelated Copper Ions from Industrial Wastewater Originating from the Electroless Copper Plating Process. Arch. Environ. Prot. 2018, 44, 32–42. [Google Scholar]
- Lejwoda, P.; Świnder, H.; Thomas, M. Evaluation of the Stability of Heavy Metal-Containing Sediments Obtained in the Wastewater Treatment Processes with the Use of Various Precipitating Agents. Environ. Monit. Assess. 2023, 195, 442. [Google Scholar] [CrossRef] [PubMed]
- Kuc, J.; Thomas, M.; Grochowalska, I.; Kulczyk, R.; Mikosz, G.; Mrózek, F.; Janik, D.; Korta, J.; Cwynar, K. Determination and Removal of Selected Pharmaceuticals and Total Organic Carbon from Surface Water by Aluminum Chlorohydrate Coagulant. Molecules 2022, 27, 5740. [Google Scholar] [CrossRef]
- Wang, X.; Bu, X.; Ni, C.; Zhou, S.; Yang, X.; Zhang, J.; Alheshibri, M.; Peng, Y.; Xie, G. Effect of Scrubbing Medium’s Particle Size on Scrubbing Flotation Performance and Mineralogical Characteristics of Microcrystalline Graphite. Miner. Eng. 2021, 163, 106766. [Google Scholar] [CrossRef]
- Um, N.; Hirato, T. Precipitation of Cerium Sulfate Converted from Cerium Oxide in Sulfuric Acid Solutions and the Conversion Kinetics. Mater. Trans. 2012, 53, 1986–1991. [Google Scholar] [CrossRef]
- Brzyska, W. Lantanowce i Aktynowce, 2nd ed.; WNT: Warszawa, Poland, 1996. [Google Scholar]
- Kajjumba, G.W.; Marti, E.J. A Review of the Application of Cerium and Lanthanum in Phosphorus Removal during Wastewater Treatment: Characteristics, Mechanism, and Recovery. Chemosphere 2022, 309, 136462. [Google Scholar] [CrossRef]
- Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare Earths. Int. Mater. Rev. 1992, 37, 197–248. [Google Scholar] [CrossRef]
- Borra, C.R.; Vlugt, T.J.; Yang, Y.; Spooren, J.; Nielsen, P.; Amirthalingam, M.; Offerman, S.E. Recovery of Rare Earths from Glass Polishing Waste for the Production of Aluminium-Rare Earth Alloys. Resour. Conserv. Recycl. 2021, 174, 105766. [Google Scholar] [CrossRef]
- Ilyas, S.; Kim, H.; Srivastava, R.R. Resource Recovery of Cerium from Spent Catalytic Converter Using Aqueous Metallurgy. In Proceedings of the 150th Annual Meeting & Exhibition Supplemental Proceedings, Online, 15–18 March 2021; pp. 1055–1062. [Google Scholar]
- Trinh, H.B.; Lee, J.; Kim, S.; Kim, J. Recovery of Cerium from Spent Autocatalyst by Sulfatizing–Leaching–Precipitation Process. ACS Sustain. Chem. Eng. 2020, 8, 15630–15639. [Google Scholar] [CrossRef]
- European Commission Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023; Final Report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- European Commission European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. Study on the Review of the List of Critical Raw Materials; Final Report; Publications Office: Luxembourg, 2017. [Google Scholar] [CrossRef]
- European Commission European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Blengini, G.; El Latunussa, C.; Eynard, U.; Torres de Matos, C.; Wittmer, D.; Georgitzikis, K.; Pavel, C.; Carrara, S.; Mancini, L.; et al. Study on the EU’s List of Critical Raw Materials (2020); Final Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Wu, Y.; Song, M.; Zhang, Q.; Wang, W. Review of Rare-Earths Recovery from Polishing Powder Waste. Resour. Conserv. Recycl. 2021, 171, 105660. [Google Scholar] [CrossRef]
- Petzet, S.; Peplinski, B.; Bodkhe, S.Y.; Cornel, P. Recovery of Phosphorus and Aluminium from Sewage Sludge Ash by a New Wet Chemical Elution Process (SESAL-Phos-Recovery Process). Water Sci. Technol. 2011, 64, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Hu, D.; Ren, W.; Zhao, Y.; Jiang, L.-M.; Wang, L. Effect of Humic Substances on Phosphorus Removal by Struvite Precipitation. Chemosphere 2015, 141, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Alayu, E.; Leta, S. Brewery Sludge Quality, Agronomic Importance and Its Short-Term Residual Effect on Soil Properties. Int. J. Environ. Sci. Technol. 2020, 17, 2337–2348. [Google Scholar] [CrossRef]
- Thabit, M.S.; Hawari, A.H.; Ammar, M.H.; Zaidi, S.; Zaragoza, G.; Altaee, A. Evaluation of Forward Osmosis as a Pretreatment Process for Multi Stage Flash Seawater Desalination. Desalination 2019, 461, 22–29. [Google Scholar] [CrossRef]
- Sanmartino, J.A.; Khayet, M.; García-Payo, M.C.; El-Bakouri, H.; Riaza, A. Treatment of Reverse Osmosis Brine by Direct Contact Membrane Distillation: Chemical Pretreatment Approach. Desalination 2017, 420, 79–90. [Google Scholar] [CrossRef]
- Rodríguez, F.A.; Santiago, D.E.; Franquiz Suárez, N.; Ortega Méndez, J.A.; Veza, J.M. Comparison of Evaporation Rates for Seawater and Brine from Reverse Osmosis in Traditional Salt Works: Empirical Correlations. Water Supply 2012, 12, 234–240. [Google Scholar] [CrossRef]
Compound | Solubility Product Constant, KSP | Source |
---|---|---|
CePO4 | 1.00 × 10−23 | [24] |
10−24.3 | [25] | |
10−26.27 | [26] | |
Ce(OH)3 | 1.6 × 10−20 | [24] |
10−21 | [27] | |
CeF3 | 8.00 × 10−16 | [24] |
1.4 × 10−18 | [28] | |
Ce2(CO3)3 | 10−21.80 | [29] |
Ce2(C2O4)3 | 1.84 × 10−28 | [30] |
5.9 × 10−30 | [31] |
Parameter | Unit | Result ± Measurement Uncertainty |
---|---|---|
Cerium (Ce) | g/kg | 101.5 ± 10 |
Total Phosphorus (P) | g/kg | 22.2 ± 2.2 |
Sodium (Na) | g/kg | 3.65 ± 0.37 |
Magnesium (Mg) | g/kg | 1.05 ± 0.11 |
Calcium (Ca) | g/kg | 21.3 ± 2.1 |
Iron (Fe) | g/kg | 3.46 ± 0.35 |
Manganese (Mn) | g/kg | 0.10 ± 0.02 |
Aluminium (Al) | g/kg | 1.23 ± 0.12 |
Barium (Ba) | g/kg | 0.185 ± 0.037 |
Strontium (Sr) | g/kg | 0.084 ± 0.021 |
Zinc (Zn) | g/kg | 0.417 ± 0.083 |
Experimental Conditions | Experimental Results | ||||
---|---|---|---|---|---|
Run | Liquid:Solid Ratio, x1 | Time (min), x2 | HCl, mg, x3 | P, mg/g | Ce3+, mg/g |
1 | 25.0 | 20.0 | 110 | 14.24 ± 2.14 | 67.95 ± 10.19 |
2 | 25.0 | 20.0 | 330 | 22.73 ± 3.41 | 104.5 ± 15.68 |
3 | 25.0 | 60.0 | 110 | 14.27 ± 2.14 | 67.86 ± 10.18 |
4 | 25.0 | 60.0 | 330 | 21.80 ± 3.27 | 101.6 ± 15.24 |
5 | 75.0 | 20.0 | 110 | 15.09 ± 2.26 | 71.73 ± 10.76 |
6 | 75.0 | 20.0 | 330 | 20.48 ± 3.07 | 98.54 ± 14.78 |
7 | 75.0 | 60.0 | 110 | 15.54 ± 2.33 | 72.23 ± 10.84 |
8 | 75.0 | 60.0 | 330 | 21.76 ± 3.26 | 102.6 ± 15.39 |
9 | 7.96 | 40.0 | 220 | 18.23 ± 2.73 | 91.89 ± 13.78 |
10 | 92.0 | 40.0 | 220 | 19.91 ± 2.99 | 91.44 ± 13.72 |
11 | 50.0 | 6.36 | 220 | 18.99 ± 2.85 | 93.18 ± 13.98 |
12 | 50.0 | 73.6 | 220 | 19.58 ± 2.94 | 93.35 ± 14.00 |
13 | 50.0 | 40.0 | 35 | 1.014 ± 0.152 | 11.17 ± 1.68 |
14 | 50.0 | 40.0 | 405 | 21.84 ± 3.28 | 101.4 ± 15.22 |
15 * | 50.0 | 40.0 | 220 | 19.67 ± 2.95 | 97.03 ± 14.55 |
16 * | 50.0 | 40.0 | 220 | 20.96 ± 3.14 | 101.1 ± 15.16 |
17 * | 50.0 | 40.0 | 220 | 21.23 ± 3.18 | 103.2 ± 15.47 |
18 * | 50.0 | 40.0 | 220 | 21.42 ± 3.21 | 105.3 ± 15.80 |
19 * | 50.0 | 40.0 | 220 | 19.45 ± 2.92 | 104.8 ± 15.72 |
20 * | 50.0 | 40.0 | 220 | 18.93 ± 2.84 | 102.2 ± 15.33 |
Parameter | Effect | Standard Error | t(15) | p | CI (−95%) | CI (+95%) | Factor | Standard Error | CI (−95%) | CI (+95%) |
---|---|---|---|---|---|---|---|---|---|---|
Constant value | 99.022 | 1.999 | 49.547 | <0.001 | 94.762 | 103.281 | 99.022 | 1.999 | 94.762 | 103.281 |
(1) liquid:solid (L) * | 0.347 | 3.782 | 0.092 | 0.928 | −7.715 | 8.408 | 0.173 | 1.891 | −3.858 | 4.204 |
(2) time (L) | 0.270 | 3.782 | 0.071 | 0.944 | −7.792 | 8.332 | 0.135 | 1.891 | −3.896 | 4.166 |
(3) mg HCl (L) | 40.904 | 3.782 | 10.814 | <0.001 | 32.842 | 48.966 | 20.452 | 1.891 | 16.421 | 24.483 |
mg HCl (Q) | −28.896 | 3.649 | −7.919 | <0.001 | −36.674 | −21.119 | −14.448 | 1.824 | −18.337 | −10.560 |
Parameter | SS | df | MS | F | p |
---|---|---|---|---|---|
(1) liquid:solid (L) * | 0.410 | 1 | 0.410 | 0.008 | 0.928 |
(2) time (L) | 0.248 | 1 | 0.248 | 0.005 | 0.944 |
(3) mg HCl (L) | 5712.425 | 1 | 5712.425 | 116.952 | <0.001 |
mg HCl (Q) | 3063.310 | 1 | 3063.310 | 62.716 | <0.001 |
Error | 732.661 | 15 | 48.844 | ||
Total sum of square | 9509.054 | 19 |
Parameter | Effect | Standard Error | t(15) | p | CI (−95%) | CI (+95%) | Factor | Standard Error | CI (−95%) | CI (+95%) |
---|---|---|---|---|---|---|---|---|---|---|
Constant value | 20.226 | 0.502 | 40.295 | <0.001 | 19.156 | 21.296 | 20.226 | 0.502 | 19.156 | 21.296 |
(1) liquid:solid (L) * | 0.389 | 0.950 | 0.409 | 0.688 | −1.636 | 2.413 | 0.194 | 0.475 | −0.818 | 1.207 |
(2) time (L) | 0.267 | 0.950 | 0.281 | 0.783 | −1.758 | 2.291 | 0.133 | 0.475 | −0.879 | 1.146 |
(3) mg HCl (L) | 9.177 | 0.950 | 9.660 | <0.001 | 7.152 | 11.202 | 4.589 | 0.475 | 3.576 | 5.601 |
mg HCl (Q) | −5.471 | 0.916 | −5.970 | <0.001 | −7.424 | −3.518 | −2.736 | 0.458 | −3.712 | −1.759 |
Parameter | SS | df | MS | F | p |
---|---|---|---|---|---|
(1) liquid:solid (L) * | 0.515 | 1 | 0.515 | 0.167 | 0.688 |
(2) time (L) | 0.243 | 1 | 0.243 | 0.079 | 0.783 |
(3) mg HCl (L) | 287.540 | 1 | 287.540 | 93.325 | <0.001 |
mg HCl (Q) | 109.810 | 1 | 109.810 | 35.640 | <0.001 |
Error | 46.216 | 15 | 3.081 | ||
Total sum of square | 444.324 | 19 |
Parameter | Unit | Result ± Measurement Uncertainty |
---|---|---|
pH | - | 0.30 ± 0.01 |
Cerium (Ce) | mg/L | 3763 ± 376 |
Total Phosphorus (P) | mg/L | 790 ± 79 |
Sodium (Na) | mg/L | 149 ± 15 |
Magnesium (Mg) | mg/L | 36.4 ± 3.6 |
Calcium (Ca) | mg/L | 774 ± 77 |
Iron (Fe) | mg/L | 96.7 ± 9.7 |
Aluminium (Al) | mg/L | 43.6 ± 4.4 |
Zinc (Zn) | mg/L | 14.3 ± 1.4 |
Parameter | Unit | Result ± Measurement Uncertainty |
---|---|---|
CeO2 | % | 74.0 ± 1.0 |
Ce(CO3)2 | % | 1.0 ± 1.0 |
Amorphous substance | % | 24.5 ± 0.5 |
Salt | Parameter | Unit | Result ± Measurement Uncertainty | ||
---|---|---|---|---|---|
Theoretical Content | ICP—OES, IC * | SEM—EDS | |||
CeCl3·7H2O | Ce | % | 37.62 | 37.21 ± 3.72 | - |
Cl | % | 28.55 | 29.15 ± 2.92 * | - | |
Ce2(SO4)3 | Ce | % | 49.30 | 46.61 ± 4.66 | 49.6 |
S | % | 16.92 | - | 16.1 | |
O | % | 33.78 | - | 33.2 | |
SO42− | % | 50.70 | 52.52 ± 5.25 | - | |
Ce(SO4)2 | Ce | % | 42.17 | 41.32 ± 4.13 | 44.0 |
S | % | 19.30 | - | 19.3 | |
O | % | 38.52 | - | 36.5 | |
SO42− | % | 57.82 | 58.68 ± 5.87 | - |
Parameter | Unit | Result ± Measurement Uncertainty | ||||
---|---|---|---|---|---|---|
The Solution after Filtration Ce2(C2O4)3·10H2O | NaOH | TMT | DMDTC | Na2CS3 | ||
pH | - | 1.8 ± 0.1 | 9.5 ± 0.1 | 9.5 ± 0.1 | 9.5 ± 0.1 | 9.5 ± 0.1 |
Total Phosphorus (P) | mg/L | 561 ± 56 | 453 ± 45 | 442 ± 44 | 438 ± 44 | 440 ± 44 |
Copper (Cu) | mg/L | 2.20 ± 0.22 | 1.82 ± 0.18 | 0.829 ± 0.166 | 0.071 ± 0.018 | 1.97 ± 0.20 |
Iron (Fe) | mg/L | 61.0 ± 6.1 | 44.68 ± 4.47 | 3.17 ± 0.32 | 1.85 ± 0.19 | 1.15 ± 0.12 |
Manganese (Mn) | mg/L | 2.33 ± 0.23 | 0.22 ± 0.04 | 0.241 ± 0.048 | 0.106 ± 0.021 | 0.136 ± 0.027 |
Aluminium (Al) | mg/L | 49.7 ± 5.0 | 1.66 ± 0.17 | 8.40 ± 0.84 | 5.66 ± 0.57 | 2.67 ± 0.27 |
Zinc (Zn) | mg/L | 9.71 ± 0.97 | 0.76 ± 0.15 | 1.34 ± 0.13 | 0.97 ± 0.19 | 1.12 ± 0.11 |
Lead (Pb) | mg/L | <0.005 ± 0.001 | <0.005 ± 0.001 | <0.005 ± 0.001 | <0.005 ± 0.001 | <0.005 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lejwoda, P.; Białecka, B.; Barbusiński, K.; Thomas, M. Recovery of Cerium Salts from Sewage Sludge Resulting from the Coagulation of Brewery Wastewater with Recycled Cerium Coagulant. Materials 2024, 17, 938. https://doi.org/10.3390/ma17040938
Lejwoda P, Białecka B, Barbusiński K, Thomas M. Recovery of Cerium Salts from Sewage Sludge Resulting from the Coagulation of Brewery Wastewater with Recycled Cerium Coagulant. Materials. 2024; 17(4):938. https://doi.org/10.3390/ma17040938
Chicago/Turabian StyleLejwoda, Paweł, Barbara Białecka, Krzysztof Barbusiński, and Maciej Thomas. 2024. "Recovery of Cerium Salts from Sewage Sludge Resulting from the Coagulation of Brewery Wastewater with Recycled Cerium Coagulant" Materials 17, no. 4: 938. https://doi.org/10.3390/ma17040938
APA StyleLejwoda, P., Białecka, B., Barbusiński, K., & Thomas, M. (2024). Recovery of Cerium Salts from Sewage Sludge Resulting from the Coagulation of Brewery Wastewater with Recycled Cerium Coagulant. Materials, 17(4), 938. https://doi.org/10.3390/ma17040938