Facile Preparation of Ultrafine Porous Copper Powders for Accelerating the Thermal Decomposition of Ammonium Perchlorate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ultrafine Porous Cu Powders
2.3. Preparation of the AP/Cu Mixture
2.4. Characterization
2.5. Measurement of Catalytic Properties
3. Results
3.1. Formation Process of Ultrafine Porous Cu Powder
3.2. The Morphology and Structure of Ultrafine Porous Cu Powders
3.3. Catalytic Properties of Ultrafine Porous Cu Powders
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Wang, H.; Huang, K.S.; Wang, C.M.; Wu, A.T. Low temperature and pressureless Cu-to-Cu direct bonding by green synthesized Cu nanoparticles. J. Taiwan Inst. Chem. Eng. 2021, 125, 394–401. [Google Scholar] [CrossRef]
- Shin, Y.M.; Lee, J.H. Effects of process parameters on Cu powder synthesis yield and particle size in a wet-chemical process. Arch. Metall. Mater. 2015, 60, 1247–1250. [Google Scholar] [CrossRef]
- Fathy, A.; El-Kady, O. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites. Mater. Des. 2013, 46, 355–359. [Google Scholar] [CrossRef]
- Chen, W.C.; Cheng, J.G.; Chen, H.P.; Ye, N.M.; Wei, B.Z.; Luo, L.M.; Wu, Y.C. Nanosized copper powders prepared by gel-casting method and their application in lubricating oil. Trans. Nonferrous Met. Soc. China 2018, 28, 1186–1191. [Google Scholar] [CrossRef]
- Wu, S.P.; Qin, H.L.; Li, P. Preparation of fine copper powders and their application in BME-MLCC. J. Univ. Sci. Technol. Beijing Miner. Met. Mater. 2006, 13, 250–255. [Google Scholar] [CrossRef]
- Chu, G.; Tang, Y.J.; Liu, W.; Li, J.; Yang, T.Z. The preparation technology and application of nanocrystalline Copper Powder. Met. Funct. Mater. 2005, 12, 18–21. [Google Scholar]
- Zhang, X.H.; Wang, C.J.; Hu, W.L.; Li, Z.L. Study on ultra-fine iron and copper powder used in diamond core drill bits. Diam. Abras. Eng. 2018, 38, 35–38. [Google Scholar]
- Li, Q.X.; Li, M.C.; Su, C.Q.; Chen, J.Y.; Zhou, B.Z.; Sun, Y.L. Nanosized Al@Cu thermite promoting the combustion of boron powder. J. Phys. Chem. C 2024, 128, 15676–15685. [Google Scholar] [CrossRef]
- Mendes, D.; Chibante, V.; Mendes, A.; Madeira, L.M. Determination of the low-temperature water−gas shift reaction kinetics using a Cu-based catalyst. Ind. Eng. Chem. Res. 2010, 49, 11269–11279. [Google Scholar] [CrossRef]
- Singh, G.; Sengupta, S.K.; Kapoor, I.P.S.; Dubey, S.; Dubey, R.; Singh, S. Nanoparticles of transition metals as accelerants in the thermal decomposition of ammonium perchlorate, part 62. J. Energetic Mater. 2013, 31, 165–177. [Google Scholar] [CrossRef]
- Chu, Y.Y.; Chen, M.J.; Chen, S.; Wang, B.; Fu, K.B.; Chen, H.Y. Micro-copper powders recovered from waste printed circuit boards by electrolysis. Hydrometallurgy 2015, 156, 152–157. [Google Scholar] [CrossRef]
- Wahyudi, S.; Soepriyanto, S.; Mubarok, M.Z.; Sutarno. Effect of Pulse parameters on the particle size of copper powder electrodeposition. IOP Conf. Ser. Mater. Sci. Eng. 2019, 547, 012020. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Wang, R.; Chen, K.H.; Hua, Y.X. Electrolysis of solid copper oxide to copper in choline chloride-EG eutectic melt. Electrochim. Acta 2014, 121, 78–82. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, Z.; Guo, Z.C. Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism. Trans. Nonferrous Met. Soc. China 2010, 20, 1154–1160. [Google Scholar] [CrossRef]
- Los, P.; Lukomska, A.; Kowalska, S.; Kwartnik, M. Laboratory and pilot scale tests of a new potential-controlled method of copper industrial electrolysis. J. Electrochem. Soc. 2014, 161, D593–D599. [Google Scholar] [CrossRef]
- Shen, L.L.; Zhao, B.; Zhang, B.G.; Liu, A.; Shi, Z.; Hu, X.W.; Boča, M. Preparation of fine copper powder by plasma discharge electrolysis process. J. Electrochem. Soc. 2018, 165, E527–E533. [Google Scholar] [CrossRef]
- Karibyan, A.N.; Medvedovskii, A.B.; Belyakov, V.A.; Sarkisyan, N.S.; Dyuzhakova, N.G.; Nichiporenko, O.S.; Aivazyan, V.T.; Poteshkina, V.P.; Naida, Y.I. Atomized copper powders. Sov. Powder Metall. Met. Ceram. 1981, 20, 316–319. [Google Scholar] [CrossRef]
- Ge, J.; Zhu, X.Y.; Long, J.M.; Liu, S.K. Impact of synergy effect of SDBS and PVP on morphology and performance of electrolytic copper powder. Mater. Res. Express 2021, 8, 096302. [Google Scholar] [CrossRef]
- Li, P.; Chen, C.G.; Qin, Q.; Lu, T.X.; Shao, Y.R.; Yang, F.; Hao, J.J.; Guo, Z.M. Sintering microstructure and properties of copper powder prepared by electrolyzation and atomization. J. Cent. South Univ. 2021, 28, 1966–1977. [Google Scholar] [CrossRef]
- Wu, S.P.; Jiao, L.; Ni, J.; Zeng, Z.O.; Liu, S. Preparation of ultra fine copper–nickel bimetallic powders for conductive thick film. Intermetallics 2007, 15, 1316–1321. [Google Scholar]
- Li, Q.J.; Yao, G.D.; Zeng, X.; Jing, Z.Z.; Huo, Z.B.; Jin, F.M. Facile and green production of Cu from CuO using cellulose under hydrothermal conditions. Ind. Eng. Chem. Res. 2012, 51, 3129–3136. [Google Scholar] [CrossRef]
- Kou, Y.; Lu, Q.Q.; Fu, X.L.; Yang, R.H.; Yu, J.H.; Yang, H.Y.; Zhang, C.; Di, J.; Liu, G.G.; Gao, H.X. Construction of Fe nanoparticles interfacial layer on micron al surface: Boosting the efficient energy release of high-energy DAP-4 as a gradient catalyst. Small 2024, 20, 2404623. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.S.; Li, S.M.; Ge, X.; Niu, M.J.; Zhang, H.; Xu, C.; Li, W.X. Influence of reducing atmosphere of subcritical/supercritical mild alcohols on the synthesis of copper powder. Ind. Eng. Chem. Res. 2014, 53, 2238–2243. [Google Scholar] [CrossRef]
- Sinha, A.; Sharma, B.P. Preparation of copper powder by glycerol process. Mater. Res. Bull. 2002, 37, 407–416. [Google Scholar] [CrossRef]
- Yu, G.; Huang, X.H.; Zou, C.; Chen, L.; Hu, B.N.; Ye, L.Y. Preparation of graphite@Cu powders from ultrasonic powdering technique. Adv. Powder Technol. 2012, 23, 16–21. [Google Scholar] [CrossRef]
- Boretti, A. The perspective of hydrogen direct reduction of iron. J. Clean. Prod. 2023, 429, 139585. [Google Scholar] [CrossRef]
- Gaiduchenko, A.K.; Napara-Volgina, S.G. Development of iron powder metallurgy. Powder Metall. Met. Ceram. 1996, 34, 424–428. [Google Scholar] [CrossRef]
- Wang, H.R.; Zhang, Z.; Zhao, L.L.; Li, X.C. The evaluation and mechanism study of zerovalent iron (Fe0) catalysts supported on coke for NO reduction by H2. Process Saf. Environ. Prot. 2024, 189, 911–919. [Google Scholar] [CrossRef]
- Lindskog, P.; Arbstedt, P. Iron powder manufacturing techniques: A brief review. Powder Metall. 1986, 29, 14–19. [Google Scholar] [CrossRef]
- Kim, J.H.; Koo, H.Y.; Hong, S.K.; Han, J.M.; Jang, H.C.; Ko, Y.N.; Hong, Y.J.; Kang, Y.C.; Kang, S.H.; Cho, S.B. Combustion characteristics of the heat pellet prepared from the Fe powders obtained by spray pyrolysis. Adv. Powder Technol. 2012, 23, 387–392. [Google Scholar] [CrossRef]
- Kou, Y.; Luo, P.; Xiao, L.; Xin, Y.P.; Zhang, G.P.; Hu, Y.B.; Yang, J.Q.; Gao, H.X.; Zhao, F.Q.; Jiang, W. New insights in nano-copper chromite catalyzing ultrafine AP: Evaluation of dispersity and mixing uniformity. Def. Technol. 2024, 32, 120–133. [Google Scholar] [CrossRef]
- Lu, Q.Q.; Hu, Y.W.; Yang, J.Q.; Yang, H.Y.; Xiao, L.; Zhao, F.Q.; Gao, H.Y.; Jiang, W.; Hao, G.Z. Thermal decomposition mechanism of ammonium nitrate on the main crystal surface of ferric oxide: Experimental and theoretical studies. Langmuir 2024, 40, 2198–2209. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Zhao, C.H.; Zhang, D.C.; Hou, Y.Y.; Su, G.S.; Liu, X.H.; Yu, Y.S.; Shen, J.N. Effect of microwave power and gas flow rate on the combustion characteristics of the ADN-based liquid propellant. Materials 2023, 16, 147. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Chen, F.Y.; Hu, Y.W.; Lu, Q.Q.; Xiao, L.; Wang, Y.L.; Zhao, F.Q.; Jiang, W.; Hao, G.Z. A review on surface coating strategies for anti-hygroscopic of high energy oxidizer ammonium dinitramide. Def. Technol. 2024, 33, 237–269. [Google Scholar] [CrossRef]
- Lu, Q.Q.; Liu, B.; Xie, Z.F.; Hu, Y.W.; Yang, H.Y.; Yang, J.Q.; Xiao, L.; Zhao, F.Q.; Jiang, W.; Hao, G.Z. Exploring the hygroscopic behavior of highly energetic oxidizer ammonium dinitramide (ADN) at different temperatures and humidities using an innovative hygroscopic modeling. Def. Technol. 2024, 40, 25–34. [Google Scholar] [CrossRef]
- Li, J.X.; Du, Y.L.; Wang, X.Y.; Zhi, X.G. Enhanced catalytic effect of Ti2CTx-MXene on thermal decomposition behavior of ammonium perchlorate. Materials 2023, 16, 344. [Google Scholar] [CrossRef]
- Kou, Y.; Wang, Y.; Zhang, J.; Guo, K.G.; Song, X.L. Iron/aluminum nanocomposites prepared by one-step reduction method and their effects on thermal decomposition of AP and AN. Def. Technol. 2023, 22, 74–87. [Google Scholar] [CrossRef]
- Hosseini, S.G.; Ahmadi, R.; Ghavi, A.; Kashi, A. Synthesis and characterization of α-Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles. Powder Technol. 2015, 278, 316–322. [Google Scholar] [CrossRef]
- Hosseini, S.G.; Abazari, R.; Gavi, A. Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014, 37, 72–79. [Google Scholar] [CrossRef]
- Eslami, A.; Hosseini, S.G.; Bazrgary, M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J. Therm. Anal. Calorim. 2012, 113, 721–730. [Google Scholar] [CrossRef]
- Hao, G.Z.; Liu, J.; Liu, H.H.; Xiao, L.; Qiao, Y.; Gao, H.; Jiang, W.; Zhao, F.Q. Cu–Cr–Pb nanocomposites. J. Therm. Anal. Calorim. 2016, 123, 263–272. [Google Scholar] [CrossRef]
- Gou, B.W.; Kou, Y.; Hu, Y.B.; Zhang, G.P.; Guo, H.; Xiao, L.; Zhao, F.Q.; Gao, H.X.; Jiang, W.; Hao, G.Z. Effect of nano-copper chromite on the thermal decomposition and combustion of AP-based solid propellants. Propellants Explos. Pyrotech. 2022, 37, e202200087. [Google Scholar] [CrossRef]
- Hao, G.Z.; Liu, J.; Gao, H.; Xiao, L.; Ke, X.; Jiang, W.; Zhao, F.Q.; Gao, H.X. Preparation of nano-sized copper β-resorcylate (β-Cu) and its excellent catalytic activity for the thermal decomposition of ammonium perchlorate. Propellants Explos. Pyrotech. 2015, 40, 848–853. [Google Scholar] [CrossRef]
- Hosseini, S.G.; Alavi, M.A.; Ghavi, A.; Toloti, S.J.H.; Agend, F. Modeling of burning rate equation of ammonium perchlorate particles over Cu–Cr–O nanocomposites. J. Therm. Anal. Calorim. 2014, 119, 99–109. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.; Yang, R.H.; Xiao, L.; Zhang, G.P.; Feng, X.J.; Zhang, K.; Jiang, W.; Hao, G.Z. An overview on synthesis, explosion, catalysis, modification, and application of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Chem. Mater. 2024, 36, 3496–3535. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc. 2013, 17, 135–149. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.G.; Zhu, Y.M.; Li, D.F. A study and industry application of classical Fe-Cu replacement reaction. Chem. Res. Chin. Univ. 1996, 17, 1092–1095. [Google Scholar]
- Din, A.S.E.; Arain, R. Thermometric, gravimetric, and potentiometric study of corrosion of iron under conditions of reaction Fe + 2Fe3+ = 3Fe2+. Br. Corros. J. 1998, 33, 189–196. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Hwang, J.; Greenlund, R.; Huang, X.D.; Luo, J.J.; Anschuetz, S. Quantitative determination of metallic iron content in steel-making slag. J. Miner. Mater. Charact. Eng. 2003, 2, 65–70. [Google Scholar] [CrossRef]
- Jin, Y.H.; Wu, S.X. Kinetics of surface transpositional coating of copper on iron powder. Mater. Rev. 2007, 21, 226–229. [Google Scholar]
- Jiang, L.; Li, Y.L.; Zhang, F.Y. Kinetic study on cementation of copper from solution using iron filings. Environ. Sci. Technol. 2009, 32, 148–151. [Google Scholar]
- Wang, X.J.; Ding, M. Critical shape nucleus analysis on substitution forms copper coated powdered iron prepared by chemical replacement. Nonferrous Met. 2010, 62, 33–36. [Google Scholar]
- Kou, Y.; Luo, P.; Xiao, L.; Xin, Y.P.; Zhang, G.P.; Hu, Y.B.; Gao, H.X.; Zhao, F.Q.; Jiang, W.; Hao, G.Z. The positive correlation between the dispersion and catalytic performance of Fe2O3 nanoparticles in nano-Fe2O3–ultrafine AP energetic composites supported by solid UV-vis spectroscopy. Dalton Trans. 2023, 52, 12796–12807. [Google Scholar] [CrossRef] [PubMed]
- Starink, M.J. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta 2003, 404, 163–176. [Google Scholar] [CrossRef]
- Blaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger equation. Thermochim. Acta 2012, 540, 1–6. [Google Scholar] [CrossRef]
- Pérez-Maqueda, L.A.; Criado, J.M.; Sánchez-Jiménez, P.E. Combined Kinetic Analysis of Solid-State Reactions: A Powerful Tool for the Simultaneous Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the Reaction Mechanism. J. Phys. Chem. A 2006, 110, 12456–12462. [Google Scholar] [CrossRef]
- Xu, R.X.; Xue, Z.H.; Yang, S.L.; Xu, J.X.; Nie, H.Q.; Yan, Q.L. Enhancing the reaction efficiency and ignition performance of core-shell Al@HMX composites by precise catalysis of graphene-based carbohydrazide complexes. Fuel 2023, 347, 128442. [Google Scholar] [CrossRef]
No. | Dosage of Fe a | Reaction Temperature/°C | Reaction Time/min | Initial pH | Yield/% |
---|---|---|---|---|---|
1 | 1 | 20 | 15 | 2 | 96.3 |
2 | 1.05 | 20 | 15 | 2 | 99.7 |
3 | 1.08 | 20 | 15 | 2 | 99.8 |
4 | 1.11 | 20 | 15 | 2 | 99.8 |
5 | 1.05 | 25 | 15 | 2 | 99.8 |
6 | 1.05 | 25 | 10 | 2 | 99.8 |
7 | 1.05 | 25 | 15 | 2.5 | 99.4 |
8 | 1.05 | 25 | 15 | 3 | 98.5 |
Samples | Cu/% | Fe/% | Pb/% | P/% | Others |
---|---|---|---|---|---|
prepared Cu powders | 99.785 | 0.012 | 0.046 | 0.099 | 0.058 |
commercial Cu powders | 99.763 | 0.004 | 0.088 | 0.097 | 0.048 |
Samples | TL/°C | TH/°C | H/(J g−1) | ΔH/(J g−1) | GR/% |
---|---|---|---|---|---|
AP | 322.3 | 441.3 | 941 | —— | —— |
M1 | 323.4 | 364.2 | 1598 | 657 | 69.8 |
M2 | 323.4 | 364.4 | 1587 | 646 | 68.7 |
Samples | Ea (kJ mol−1) | A (min−1) | k (s−1) |
---|---|---|---|
AP | 141.8 | 1.40 × 1010 | 9.97 × 10−3 |
M1 | 111.8 | 9.30 × 108 | 1.06 × 10−2 |
M2 | 112.7 | 1.07 × 109 | 1.04 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Shao, Y.; Chang, S.; Huang, Y.; Kou, Y.; Xiao, L.; Hao, G. Facile Preparation of Ultrafine Porous Copper Powders for Accelerating the Thermal Decomposition of Ammonium Perchlorate. Materials 2024, 17, 5728. https://doi.org/10.3390/ma17235728
Li D, Shao Y, Chang S, Huang Y, Kou Y, Xiao L, Hao G. Facile Preparation of Ultrafine Porous Copper Powders for Accelerating the Thermal Decomposition of Ammonium Perchlorate. Materials. 2024; 17(23):5728. https://doi.org/10.3390/ma17235728
Chicago/Turabian StyleLi, Dayong, Yuling Shao, Shengquan Chang, Yanggang Huang, Yong Kou, Lei Xiao, and Gazi Hao. 2024. "Facile Preparation of Ultrafine Porous Copper Powders for Accelerating the Thermal Decomposition of Ammonium Perchlorate" Materials 17, no. 23: 5728. https://doi.org/10.3390/ma17235728
APA StyleLi, D., Shao, Y., Chang, S., Huang, Y., Kou, Y., Xiao, L., & Hao, G. (2024). Facile Preparation of Ultrafine Porous Copper Powders for Accelerating the Thermal Decomposition of Ammonium Perchlorate. Materials, 17(23), 5728. https://doi.org/10.3390/ma17235728