Kinetic Study of Oxidation of Ag-Sn-Zn Solid Solution Powders via Hot Mechanochemical Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Alloying/Ag-Sn-Zn Solid Solution Formation
2.2. Hot Mechanochemical Processing
2.3. Characterization
3. Results and Discussion
3.1. Mechanical Alloying/Ag-Zn-Sn Solid Solution Formation
3.2. Hot Mechanochemical Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, W.; Yu, H.; Wang, L.; Wu, X.; Ouyang, C.; Zhang, Y.; He, J. State of the art and prospects in sliver- and copper-matrix composite electrical contact materials. Mater. Today Commun. 2023, 37, 107256. [Google Scholar] [CrossRef]
- Wu, C.; Yi, D.; Wen, W.; Li, S.; Zhou, J. Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials. Trans. Nonferrous Met. Soc. 2016, 26, 185–195. [Google Scholar] [CrossRef]
- Shou Shen, Y.; Gould, L.; Swann, S. DTA and TGA studies of four Ag-MeO electrical contact materials. IEEE Trans. Compon. Hybr. 1985, 8, 352–358. [Google Scholar] [CrossRef]
- Peana, M.; Pelucelli, A.; Chasapis, C.; Perlepes, S.; Bekiari, V.; Medici, S.; Zoroddu, M. Biological effects of human exposure to environmental cadmium. Biomolecules 2023, 13, 36. [Google Scholar] [CrossRef]
- Behrens, V. Electrical contacts and hazardous substances—technical backgrounds, legal restrictions, and substitutions. In Proceedings of the IEEE 67th Holm Conference on Electrical Contacts, Tampa, FL, USA, 23–26 October 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, W.; Zheng, Z.; Wang, S. Effect of electrical load on contact welding failure of silver tin oxide material used in DC electromechanical relays. IEEE Access 2019, 7, 133079–133089. [Google Scholar] [CrossRef]
- Li, G.; Fang, X.; Feng, W.; Liu, J. In situ formation and doping of Ag/SnO2 electrical contact materials. J. Alloys Compd. 2017, 716, 106–111. [Google Scholar] [CrossRef]
- Chen, J.; Jia, H.; Zhu, G.; Chen, S.; Li, A. Observation on AgSnO2In2O3 molten bridge phenomena under different currents. Indian J. Eng. Mater. Sci. 2017, 24, 369–376. [Google Scholar]
- Wang, Z.; Wang, Y. Impact of convection-diffusion and flow-path interactions on the dynamic evolution of microstructure: Arc erosion behavior of Ag-SnO2 contact materials. J. Alloys Compd. 2019, 774, 1046–1058. [Google Scholar] [CrossRef]
- Liu, X.; Wu, S.; Chu, P.; Chung, C.; Zheng, J.; Li, S. Effects of coating process on the characteristics of Ag-SnO2 contact materials. Mater. Chem. Phys. 2006, 98, 477–480. [Google Scholar] [CrossRef]
- Li, G.; Yang, T.; Ma, Y.; Feng, W.; Zhang, X.; Fang, X. The effects of oxide additives on the mechanical characteristics of Ag–SnO2 electrical contact materials. Ceram. Int. 2020, 46, 4897–4906. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Wang, L.; Wang, J.; Zhu, Y. Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials. Int. J. Min. Met. Mater. 2018, 25, 1275–1285. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L.; Liu, M.; Yu, J.; Xiong, D.; Zheng, Z.; Wang, L. Effects of NiO content on the microstructure and mechanical properties of AgSnO2NiO composites. Sci. Eng. Compos. Mater. 2019, 26, 221–229. [Google Scholar] [CrossRef]
- Han, X.; Li, G.; Lu, H.; Feng, W. Arc erosion behaviors of the densified Ag-SnO2 contact materials containing sub-micron and nano In2O3 additives. Mater. Today Commun. 2024, 38, 108373. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; An, L.; Wang, H. Preparation and study of nano-Ag/SnO2 electrical contact material doped with titanium element. Rare Met. Mater. Eng. 2014, 43, 1566–1570. [Google Scholar] [CrossRef]
- Guzmán, D.; González, F.; Muranda, D.; Aguilar, C.; Guzmán, A.; Soliz, A.; Lozada, L.; Iturriza, I.; Castro, F. Fabrication and arc erosion behavior of Ag-SnO2-ZnO electrical contact materials. Materials 2023, 16, 3618. [Google Scholar] [CrossRef]
- Choi, K.; Koo, H.; Kim, T.; Kim, H. Antireflective ZnSnO/Ag bilayer-based transparent source and drain electrodes for transparent thin film transistors. Appl. Phys. Lett. 2012, 100, 263505. [Google Scholar] [CrossRef]
- Xiuqing, Q.; Qianhong, S.; Lingjie, Z.; Lawson, C.; Xianping, F.; Hui, Y. A novel method for the preparation of Ag/SnO2 electrical contact materials. Rare Met. Mater. Eng. 2014, 43, 2614–2618. [Google Scholar] [CrossRef]
- Ćosović, V.; Ćosović, A.; Talijan, N.; Živković, D.; Manasijević, D.; Minić, D. Improving dispersion of SnO2 nanoparticles in Ag–SnO2 electrical contact materials using template method. J. Alloys Compd. 2013, 567, 33–39. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Yang, X.; Zou, J.; Lian, S. Arc erosion behaviors of AgSnO2 contact materials prepared with different SnO2 particle sizes. Trans. Nonferrous Met. Soc. China 2016, 26, 783–790. [Google Scholar] [CrossRef]
- Heinicke, G. Tribochemistry; Akademie–Verlag: Berlin, Germany, 1984. [Google Scholar]
- Chen, Z.; Han, G.; Mahmood, A.; Hou, J.; Wei, W.; Shon, H.; Wang, G.; Waite, T.; Baek, J.; Ni, B. Mechanosynthesized electroactive materials for sustainable energy and environmental applications: A critical review. Prog. Mater. Sci. 2024, 145, 101299. [Google Scholar] [CrossRef]
- Yang, L.; Pan, Z.; Tian, Z. Mechanochemical synthesis of solid catalysts and application in catalytic reaction. Chem. Cat. Chem. 2024, 16, e202301519. [Google Scholar] [CrossRef]
- Alrbaihat, M. A review of solid state mechanochemistry for drug synthesis and modification. AIP Conf. Proc. 2023, 2834, 030019. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, M.; Liu, X.; Ma, F.; Wei, B.; Wumaier, K.; Zhao, J.; Lu, Z.; Sun, J.; Chen, J.; et al. Green and rapid synthesis of iron molybdate catalyst by mechanochemistry and their catalytic performance for the oxidation of methanol to formaldehyde. J. Chem. Eng. 2019, 364, 390–400. [Google Scholar] [CrossRef]
- Cindro, N.-; Tireli, M.; Karadeniz, B.; Mrla, T.; Užarević, K. Investigations of thermally controlled mechanochemical milling reactions. ACS Sustain. Chem. Eng. 2019, 7, 16301–16309. [Google Scholar] [CrossRef]
- Millet, P.; Calka, A.; Williams, J.; Vantenaar, G. Formation of gallium nitride by a novel hot mechanical alloying process. Appl. Phys. Lett. 1993, 63, 2505–2507. [Google Scholar] [CrossRef]
- Alić, J.; Stolar, T.; Štefanić, Z.; Užarević, K.; Šekutor, M. Sustainable synthesis of diamondoid ethers by high-temperature ball milling. CS Sustain. Chem. Eng. 2023, 11, 617–624. [Google Scholar] [CrossRef]
- Guzmán, D.; Aguilar, C.; Rojas, P.; Criado, J.; Diánez, M.; Espinoza, R.; Guzmán, A.; Martínez, C. Production of Ag−ZnO powders by hot mechanochemical processing. Trans. Nonferrous Met. Soc. China 2019, 29, 365–373. [Google Scholar] [CrossRef]
- Gil-González, E.; Rodríguez-Laguna, M.; Sánchez-Jiménez, P.; Perejón, A.; Pérez-Maqueda, L. Unveiling mechanochemistry: Kinematic-kinetic approach for the prediction of mechanically induced reactions. J. Alloys Compd. 2021, 866, 158925. [Google Scholar] [CrossRef]
- Gil-González, E.; Pérez-Maqueda, L.; Sánchez-Jiménez, P.; Perejón, A. Paving the way to establish protocols: Modeling and predicting mechanochemical reactions. J. Phys. Chem. Lett. 2021, 12, 5540–5546. [Google Scholar] [CrossRef]
- Butyagin, P. Kinetics and nature of mechanochemical reactions. Russ. Chem. Rev. 1971, 40, 901–915. [Google Scholar] [CrossRef]
- High Energy Ball Mill Emax. Available online: https://www.retsch.com/products/milling/ball-mills/emax/downloads/ (accessed on 14 September 2024).
- Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L. MAUD—Materials Analysis Using Diffraction. Available online: http://maud.radiographema.eu/ (accessed on 15 February 2024).
- King, H. Quantitative size-factors for metallic solid solutions. J. Mater. Sci. 1966, 1, 79–90. [Google Scholar] [CrossRef]
- Popa, N. The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Cryst. 1998, 31, 176–180. [Google Scholar] [CrossRef]
- Ecker, J.; Holzer, J.C.; Krill, C.E.; Johnson, W.L. Structural and thermodynamic properties of nanocrystalline FCC metals prepared by mechanical attrition. J. Mater. Res. 1992, 7, 1751–1761. [Google Scholar] [CrossRef]
- Chin, H.; Cheong, K.; Ismail, A. A Review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 2010, 41, 824–832. [Google Scholar] [CrossRef]
- Huang, W.; Tsai, C.; Lee, P.; Kao, C. Effects of bonding pressures on microstructure and mechanical properties of silver–tin alloy powders synthesized by ball milling for high-power electronics packaging. J. Mater. Sci. Technol. 2022, 19, 3828–3841. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Hwangb, C.; Choi, J. Thermodynamic stability of various phases of zinc tin oxides from ab initio calculations. J. Mater. Chem. C 2013, 1, 6364–6374. [Google Scholar] [CrossRef]
- Das, J.; Pradhan, S.; Sahu, D.; Mishra, D.; Sarangi, S.; Nayak, B.; Verma, S.; Roul, B. Micro-Raman and XPS studies of pure ZnO ceramics. Physica B 2010, 405, 2492–2497. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Zong, X.; Zhang, Y. Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sensor Actuat. B-Chem. 2018, 274, 575–586. [Google Scholar] [CrossRef]
- Moulder, J.; Stickle, W.; Sobol, P.; Bombe, K. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1993; p. 127. [Google Scholar]
- Hsiao, A.; McHenry, M.; Laughlin, D.; Kramer, M.; Ashe, C.; Ohkubo, T. The thermal, magnetic, and structural characterization of the crystallization kinetics of Fe88Zr7B4Cu1, an amorphous soft magnetic ribbon. IEEE Trans. Magn. 2002, 38, 3039–3044. [Google Scholar] [CrossRef]
- Gryaznov, V.; Vedernikov, V.; Gulyanova, S. Participation of oxygen, having diffused through a silver membrane catalyst, in heterogeneous oxidation processes. Kinet. Katal. 1986, 27, 129–133. [Google Scholar]
- Lu, Q.; Wei, Z.; Li, C.; Ma, J.; Li, L. Photocatalytic degradation of methyl orange by noble metal Ag modified semiconductor Zn2SnO4. Mater. Sci. Semicond. Process. 2022, 138, 106290. [Google Scholar] [CrossRef]
- Huang, S.; Xu, H.; Ouyang, Y.; Zhou, Y.; Xu, J.; Liu, J. Metallic silver modified SnO2–Zn2SnO4 cube nanomaterials for improved photocatalytic degradation of rhodamine B. React. Kinet. Mech. Cat. 2024, 1–14. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, J.; Liu, Q.; Yu, J.; Chen, R.; Zhang, H.; Song, D.; Yang, P.; Zhang, M.; Wang, J. Ag-modified hexagonal nanoflakes-textured hollow octahedron Zn2SnO4 with enhanced sensing properties for triethylamine. J. Alloys Compd. 2020, 15, 153724. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán, D.; Figueroa, A.; Soliz, A.; Guzmán, A.; Aguilar, C.; Galleguillos-Madrid, F.M.; Portillo, C.; Shah, S.I. Kinetic Study of Oxidation of Ag-Sn-Zn Solid Solution Powders via Hot Mechanochemical Processing. Materials 2024, 17, 5115. https://doi.org/10.3390/ma17205115
Guzmán D, Figueroa A, Soliz A, Guzmán A, Aguilar C, Galleguillos-Madrid FM, Portillo C, Shah SI. Kinetic Study of Oxidation of Ag-Sn-Zn Solid Solution Powders via Hot Mechanochemical Processing. Materials. 2024; 17(20):5115. https://doi.org/10.3390/ma17205115
Chicago/Turabian StyleGuzmán, Danny, Augusto Figueroa, Alvaro Soliz, Alexis Guzmán, Claudio Aguilar, Felipe M. Galleguillos-Madrid, Carlos Portillo, and Syed Ismat Shah. 2024. "Kinetic Study of Oxidation of Ag-Sn-Zn Solid Solution Powders via Hot Mechanochemical Processing" Materials 17, no. 20: 5115. https://doi.org/10.3390/ma17205115
APA StyleGuzmán, D., Figueroa, A., Soliz, A., Guzmán, A., Aguilar, C., Galleguillos-Madrid, F. M., Portillo, C., & Shah, S. I. (2024). Kinetic Study of Oxidation of Ag-Sn-Zn Solid Solution Powders via Hot Mechanochemical Processing. Materials, 17(20), 5115. https://doi.org/10.3390/ma17205115