Growth and Structural Characterization of h-LuMnO3 Thin Films Deposited by Direct MOCVD
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Film Composition and Phases
3.2. Thermal Treatments
3.3. Raman Spectroscopy
3.4. Optical Band Gap Measurements
3.5. Piezo Force Microscopy Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueiras, F.G.; Karpinsky, D.; Tavares, P.B.; Gonçalves, J.N.; Yanez-Vilar, S.; Santos, A.F.M.D.; Franz, A.; Tovar, M.; Moreira, J.A.; Amaral, V.S. Novel multiferroic state and ME enhancement by breaking the AFM frustration in LuMn1−xO3. Phys. Chem. 2017, 19, 1335. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Nair, H.S.; Xiao, Y.; Senyshyn, A.; Pomjakushin, V.Y.; Feng, E.; Su, Y.; Jin, W.T.; Brückel, T. Magnetic structures and magnetoelastic coupling of Fe doped hexagonal manganites LuMn1−xFexO3(0 ≤ x ≤ 0.3). Phys. Rev. B. 2016, 94, 125150. [Google Scholar] [CrossRef]
- Lewtas, H.J.; Boothroyd, A.T.; Rotter, M.; Prabhakaran, D.; Müller, H.; Le, M.D.; Roessli, B.; Gavilano, J.; Bourges, P. Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering. Phys. Rev. B-Condens. Matter Mater. Phys. 2010, 82, 184420. [Google Scholar] [CrossRef]
- Barcelay, Y.R.; Moreira, J.A.; González-Aguilar, G.; Almeida, A.; Araujo, J.P.; De La Cruz, J.P. Synthesis of orthorhombic rare-earth manganite thin films by a novel chemical solution route. J. Electroceramics 2011, 26, 44–55. [Google Scholar] [CrossRef]
- Suresh, P.; Laxmi, K.V.; Bera, A.K.; Yusuf, S.M.; Chittari, B.L.; Jung, J.; Kumar, P.S.A. Magnetic ground state of the multiferroic hexagonal LuFeO3. Phys. Rev. B. 2018, 97, 184419. [Google Scholar] [CrossRef]
- Bekheet, M.F.; Svoboda, I.; Liu, N.; Bayarjargal, L.; Irran, E.; Dietz, C.; Stark, R.W.; Riedel, R.; Gurlo, A. Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions. J. Solid State Chem. 2016, 241, 54–63. [Google Scholar] [CrossRef]
- Bernd, L. Hexagonal Manganites (RMnO3): Class (I) Multiferroics with Strong Coupling of Magnetism and Ferroelectricity. ISRN Condens. Matter Phys. 2013, 2013, 497073. [Google Scholar] [CrossRef]
- Griffin, S.M.; Reidulff, M.; Selbach, S.M.; Spaldin, N.A. Defect Chemistry as a Crystal Structure Design Parameter: Intrinsic Point Defects and Ga Substitution in InMnO3. Chem. Mater. 2017, 29, 2425–2434. [Google Scholar] [CrossRef]
- Lonkai, T.; Tomuta, D.G.; Amann, U.; Ihringer, J.; Hendrikx, R.W.; Többens, D.M.; Mydosh, J.A. Development of the high-temperature phase of hexagonal manganites. Phys. Rev. B-Condens. Matter Mater. Phys. 2004, 69, 134108. [Google Scholar] [CrossRef]
- Polat, O.; Coskun, F.M.; Coskun, M.; Durmus, Z.; Caglar, Y.; Caglar, M.; Turut, A. Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level. J. Mater. Sci. Mater. Electron. 2019, 30, 3443–3451. [Google Scholar] [CrossRef]
- Tian, M.; Li, Y.; Wang, G.; Hao, X. Large photocurrent density in polycrystalline hexagonal YMnO3 thin film induced by ferroelectric polarization and the positive driving effect of grain boundary. Sol. Energy Mater. Sol. Cells. 2021, 224, 111009. [Google Scholar] [CrossRef]
- Lee, J.H.; Murugavel, P.; Lee, D.; Noh, T.W.; Jo, Y.; Jung, M.H.; Jang, K.H.; Park, J.G. Multiferroic properties of epitaxially stabilized hexagonal DyMnO3 thin films. Appl. Phys. Lett. 2007, 90, 012903. [Google Scholar] [CrossRef]
- Lu, C.; Liu, J.M. DyMnO3: A model system of type-II multiferroics. J. Mater. 2016, 2, 213–224. [Google Scholar] [CrossRef]
- Lee, D.; Choi, W.S.; Noh, T.W. Tunable band gap in epitaxial ferroelectric Ho(Mn,Ga)O3 films. Appl. Phys. Lett. 2016, 108, 192101. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, G.; Yao, G.; Zhang, P.; Dai, S.; Jiang, Y.; Li, H.; Yu, B.; Ni, H.; Wei, S. Lead Free Perovskite Narrow-Bandgap Oxide Semiconductors of Rare Earth Manganates. ACS Omega 2020, 5, 8766–8776. [Google Scholar] [CrossRef]
- Jang, S.Y.; Lee, D.; Lee, J.H.; Murugavel, P.; Chung, J.S. Ferroelectric properties of multiferroic hexagonal ErMnO3 thin films. J. Korean Phys. Soc. 2009, 55, 841–845. [Google Scholar] [CrossRef]
- Huang, X.; Paudel, T.R.; Dong, S.; Tsymbal, E.Y. Hexagonal rare earth manganites as promising photovoltaics and light polarizers. Phys. Rev. B. 2015, 92, 125201. [Google Scholar] [CrossRef]
- Ionela, I. Growth, Characterization and Phase Transformation in YMnO3 Thin Films. Ph.D. Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères, France, 2015. Available online: https://hal.archives-ouvertes.fr/tel-01206753/ (accessed on 1 January 2021).
- Han, H.; Song, S.; Lee, J.H.; Kim, K.J.; Kim, G.W.; Park, T.; Jang, H.M. Switchable Photovoltaic Effects in Hexagonal Manganite Thin Films Having Narrow Band Gaps. Chem. Mater. 2015, 27, 7425–7432. [Google Scholar] [CrossRef]
- Martin, L.W.; Chu, Y.H.; Ramesh, R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R. 2010, 68, 89–133. [Google Scholar] [CrossRef]
- Abdel-Latif, I.A. Perovskite Strontium Doped Rare Earth Manganites Nanocomposites and Their Photocatalytic Performances; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Sheng, Y.; Fina, I.; Gospodinov, M.; Fontcuberta, J. Switchable photovoltaic response in hexagonal LuMnO3 single crystals. Appl. Phys. Lett. 2021, 118, 232902. [Google Scholar] [CrossRef]
- Fujimura, N.; Ishida, T.; Yoshimura, T.; Ito, T. Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 1996, 69, 1011–1013. [Google Scholar] [CrossRef]
- Imada, S.; Kuraoka, T.; Tokumitsu, E.; Ishiwara, H. Ferroelectricity of YMnO3 Thin Films on Pt (111)/Al2O3(0001) and Pt(111)/Y2O3(111)/Si(111) Structures Grown by Molecular Beam Epitaxy. Appl. Phys. 2001, 40, 666–671. [Google Scholar]
- Ǵlard, I.; Dubourdieu, C.; Pailh, S.; Petit, S.; Simon, C. Neutron diffraction study of hexagonal manganite YMnO3, HoMnO3, and ErMnO3 epitaxial films. Appl. Phys. Lett. 2008, 92, 232506. [Google Scholar] [CrossRef]
- Dubourdieu, C.; Huot, G.; Gelard, I.; Roussel, H. Thin films and superlattices of multiferroic hexagonal rare earth manganites. Philos. Mag. Lett. 2007, 87, 203–210. [Google Scholar] [CrossRef]
- Iliescu, I.; Boudard, M.; Pignard, S.; Rapenne, L.; Chaudouët, P.; Roussel, H. Growth and structural characterization of YMnO3 thin films grown by pulsed liquid injection MOCVD on Si and SrTiO3 substrates. Phase Transit. 2013, 86, 1094–1103. [Google Scholar] [CrossRef]
- Brito, D.M.S.; Melo, A.T.; Lima, A.F.; Lalic, M.V. The structural, magnetic and electronic properties of the ground state of the hexagonal LuMnO3 multiferroic. J. Phys. Scr. 2020, 95, 085801. [Google Scholar] [CrossRef]
- Souchkov, A.B.; Simpson, J.R.; Quijada, M.; Ishibashi, H.; Hur, N.; Ahn, J.S.; Cheong, S.W.; Millis, A.J.; Drew, H.D. Exchange Interaction Effects on the Optical Properties of LuMnO3. Phys. Rev. Lett. 2003, 91, 027203. [Google Scholar] [CrossRef]
- Eisentraut, K.J.; Sievers, R.E. Volatile Rare Earth Chelates. J. Am. Chem. Soc. 1965, 87, 5254–5256. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Touam, T.; Atoui, M.; Hadjoub, I.; Chelouche, A.; Boudine, B.; Fischer, A.; Boudrioua, A.; Doghmane, A. Effects of dipcoating speed and annealing temperature on structural, morphological and optical properties of sol gel nano-structured TiO2 thin films. EPJ Appl. Phys. 2014, 67, 30302. [Google Scholar] [CrossRef]
- Llovet, X.; Merlet, C. Electron probe microanalysis of thin films and multilayers using the computer program XFILM. Microsc. Microanal. 2010, 16, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Figueiras, F.G.; Karpinsky, D.; Tavares, P.B.; Das, S.; Leitão, J.V.; Brück, E.H.; Moreira, J.A.; Amaral, V.S. Breaking the geometric magnetic frustration in controlled off stoichiometric LuMn1+ZO3+δ compounds. Phys. Chem. Chem. Phys. 2016, 18, 13519–13523. [Google Scholar] [CrossRef] [PubMed]
- Zaumseil, P. High-resolution characterization of the forbidden Si 200 and Si 222 reflections. J. Appl. Crystallogr. 2015, 48, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Imamura, N.; Karppinen, M.; Fjellvåg, H.; Yamauchi, H. Hole doping into the metastable LuMnO3 perovskite. Solid State Commun. 2006, 140, 386–390. [Google Scholar] [CrossRef]
- Van Aken, B.B.; Meetsma, A.; Palstra, T.T.M. Palstra, Hexagonal LuMnO3 revisited. Acta Crystallogr. Sect. E Struct. Rep. 2001, 57, i101–i103. [Google Scholar] [CrossRef]
- Romaguera-Barcelay, Y.; Moreira, J.A.; Almeida, A.; De La Cruz, J.P. Structural and electrical properties of LuMnO3 thin film prepared by chemical solution method. Thin Solid Films 2012, 520, 1734–1739. [Google Scholar] [CrossRef]
- Baghizadeh, A.; Vieira, J.M.; Amaral, J.S.; Graça, M.P.; Soares, M.R.; Mota, D.A.; Amaral, V.S. Crystal structure, magnetic and dielectric behavior of h-LuMnxO3±δ ceramics (0.95 ≤ x ≤ 1.04). J. Magn. Magn. Mater. 2015, 395, 303–311. [Google Scholar] [CrossRef]
- Vermette, J.; Jandl, S.; Mukhin, A.A.; Ivanov, V.Y.; Balbashov, A.; Gospodinov, M.M.; Pinsard-Gaudart, L. Raman study of the antiferromagnetic phase transitions in hexagonal YMnCO3 and LuMnO3. J. Phys. Condens. Matter. 2010, 22, 356002. [Google Scholar] [CrossRef]
- Ghosh, A.; Sahu, J.R.; Bhat, S.V.; Rao, C.N.R. A Raman study of multiferroic LuMnO3. Solid State Sci. 2009, 11, 1639–1642. [Google Scholar] [CrossRef]
- Borowicz, P.; Latek, M.; Rzodkiewicz, W.; Łaszcz, A.; Czerwinski, A.; Ratajczak, J. Deep ultraviolet Raman investigation of silicon oxide: Thin film on silicon substrate versus bulk material. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 045003. [Google Scholar] [CrossRef]
- Che, H.; Huso, J.; Morrison, J.L.; Thapa, D.; Huso, M.; Yeh, W.J.; Tarun, M.C.; McCluskey, M.D.; Bergman, L. Optical properties of ZnO alloyed nanocrystalline films. J. Nanomater. 2012, 2012, 7. [Google Scholar] [CrossRef]
RMnO3 | a (Å) | c (Å) | TN (K) | Tc (K) | Eg (eV) | References |
---|---|---|---|---|---|---|
InMnO3 | 5.869 | 11.47 | 120 | 500 | 1.16 | [6,7,8] |
ScMnO3 | 5.833 | 11.17 | 130 | -- | -- | [7] |
YMnO3 | 6.148 | 11.44 | 72 | 920 | 1.53–2.10 | [7,9,10,11] |
DyMnO3 | 6.182 | 11.45 | 39–57 | 19 | -- | [7,9,12,13] |
HoMnO3 | 6.142 | 11.42 | 76 | 873 | 1.35–1.40 | [7,9,14,15] |
ErMnO3 | 6.112 | 11.40 | 79–81 | 800 | 1.35 | [7,15,16] |
TmMnO3 | 6.092 | 11.37 | 84–86 | >573 | -- | [7,9] |
YbMnO3 | 6.062 | 11.36 | 87–89 | 993 | 1.35 | [7,9,15] |
TbMnO3 | 6.270 | 11.46 | 41–42 | >590 | 1.4 | [17,18] |
LuMnO3 | 6.046 | 11.41 | 90 | >750 | 1.55 | [7,9,19] |
Sample | Substrates | Deposition Temperature | Thermal Treatment | Time (h) | a (Å) | c (Å) | V (Å3) | ΔV/Vbulk [34] (%) |
---|---|---|---|---|---|---|---|---|
LM700-as00 | \SiO2 \Pt\Si | 700 °C | as-deposited | 00 | -- -- | -- -- | -- -- | -- -- |
LM700-ex12 | \SiO2 \Pt\Si | ex situ 800 °C 1 bar air | 12 | 6.002(2) 5.99(3) | 11.27(2) 11.23(2) | 351(1) 349(3) | −2.2 −2.9 | |
LM800-as00 | \SiO2 \Pt\Si | 800 °C | as-deposited | 00 | 5.99(3) 5.998(7) | 11.28(9) 11.22(2) | 350(2) 350(1) | −2.4 −2.7 |
LM800-ex12 | \SiO2 \Pt\Si | ex situ 800 °C 1 bar air | 12 | 6.03(2) 6.000(4) | 11.34(3) 11.27(4) | 357(2) 351(1) | −0.7 −2.2 | |
LM800-in04 | \SiO2 \Pt\Si | in situ 800 °C 1 bar O2 | 04 | 5.97(2) 5.994(3) | 11.22(2) 11.24(2) | 346(2) 350(1) | −3.6 −2.6 | |
LM800-in12 | \SiO2 \Pt\Si | in situ 800 °C 1 bar O2 | 12 | 5.98(2) 6.00(1) | 11.23(4) 11.22(2) | 348(2) 349(2) | −3.1 −2.7 |
Raman Mode | A1 | -- | A1 | A1 | A1 | A1 | A1 | E1 |
---|---|---|---|---|---|---|---|---|
Single crystal [42] | 121 | -- | 224 | 301 | 432 | 472 | 689 | 642 |
Bulk LuMnO3 [1] | 117 | -- | 222 | 298 | 425 | 463 | 689 | 640 |
LM800-ex12\SiO2 | 118 | 140 | 244 | 303 | -- | 463 | 685 | 661 |
LM800-ex12\Pt\Si | 116 | 140 | 247 | 302 | -- | 465 | 684 | 655 |
LM800-in04\Pt\Si | 118 | 139 | 241 | 302 | -- | 465 | 684 | 644 |
LM800-in12\Pt\Si | 118 | -- | -- | -- | -- | 469 | 688 | 648 |
Sample | Substrates | Indirect Eg ±0.05 [eV] | Direct Eg ±0.05 [eV] |
---|---|---|---|
LM700-ex12 | \SiO2 \Pt\Si | 1.14 0.90 | 1.44 1.44 |
LM800-ex12 | \SiO2 \Pt\Si | 1.04 0.96 | 1.44 1.48 |
LM800-in04 | \SiO2 \Pt\Si | 0.96 1.11 | 1.1 1.43 |
LM800-in12 | \SiO2 \Pt\Si | 0.86 1.04 | 1.35 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait Bassou, A.; Fernandes, L.; Fernandes, J.R.; Figueiras, F.G.; Tavares, P.B. Growth and Structural Characterization of h-LuMnO3 Thin Films Deposited by Direct MOCVD. Materials 2024, 17, 211. https://doi.org/10.3390/ma17010211
Ait Bassou A, Fernandes L, Fernandes JR, Figueiras FG, Tavares PB. Growth and Structural Characterization of h-LuMnO3 Thin Films Deposited by Direct MOCVD. Materials. 2024; 17(1):211. https://doi.org/10.3390/ma17010211
Chicago/Turabian StyleAit Bassou, Abderrazzak, Lisete Fernandes, José R. Fernandes, Fábio G. Figueiras, and Pedro B. Tavares. 2024. "Growth and Structural Characterization of h-LuMnO3 Thin Films Deposited by Direct MOCVD" Materials 17, no. 1: 211. https://doi.org/10.3390/ma17010211
APA StyleAit Bassou, A., Fernandes, L., Fernandes, J. R., Figueiras, F. G., & Tavares, P. B. (2024). Growth and Structural Characterization of h-LuMnO3 Thin Films Deposited by Direct MOCVD. Materials, 17(1), 211. https://doi.org/10.3390/ma17010211