Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances
Abstract
:1. Introduction
2. Bioplastics: Definitions and Classification
- Bio-based aliphatic polyesters (PLA, PBS, PHAs);
- Cellulose-based bioplastics;
- Starch-based bioplastics;
- Bio-based aromatic polyesters (polyethylene furanoate, PEF);
- Bio-based polyurethanes;
- Fossil-derived biodegradable polymers (PVA, PBAT, PCL, Polyglycolic acid, PLGA).
2.1. PHAs
2.2. TPS
2.3. PLA
2.4. PCL
2.5. PBS
2.6. PBAT
3. Bioplastics Biodegradation
3.1. General Concepts and Influencing Factors
3.2. Biodegradation Mechanisms
3.3. Microbiology of Bioplastics Biodegradation
3.4. Biodegradation Monitoring Techniques
4. Methods
- Volume of the scientific production in the field and its time evolution, to highlight emerging research trends on the topic;
- Geographic distribution of the scientific studies, to identify the geographic areas most concerned on bioplastics degradability-related issues;
- Research areas, to visualize the main scientific fields of investigation;
- Frequency of keywords occurrence, to pick out research hot topics;
- Co-occurrence network of keywords, to find central keywords and clusters of research themes.
5. Summary and Discussion of Literature Data on Anaerobic Degradation of Bioplastics
5.1. General Bibliographic Analysis
- Cluster 1 included the main features of anaerobic digestion of bioplastics as well as co-digestion with other organic residues in the framework of waste management, with a focus on biogas production, digestion conditions, and pre-treatment;
- Cluster 2 included topics related to a comparative assessment of bioplastic degradation during composting and anaerobic digestion, modelling of the process mechanisms and kinetics as well as assessment of residual microplastics;
- Cluster 3 grouped the studies on specific bioplastic types (PCL, PLA, starch blends, composite materials);
- Cluster 4 addressed the microbial issues involved in bioplastics degradation and biopolymers generated by the fermentation of organic residues (PHA, PHB);
- Cluster 5 grouped the topics related to the evaluation of bioplastics degradability and the corresponding testing methods.
5.2. Discussion of Literature Data
- Materials displaying a generally low specific methane/biogas production and a related low degree of substrate conversion under all conditions reported in the searched literature. These include PBAT, PBS, PCL, PVA, Mater-Bi, and PLA blends, which—at least for the investigated conditions—are regarded to be poorly affected by biochemical anaerobic degradation reactions at mesophilic temperatures;
- Materials displaying typically high values of the specific methane/biogas production and the biodegradation degree. The range of polymer types belonging to this group is much narrower and includes several variants of PHAs (PHB, PHBV, PHBO, and their blends), confirming their widely demonstrated high degradability and TPS;
- Materials showing a notably variable response to anaerobic degradation, which is largely affected by the biopolymer properties and the digestion conditions as explained above. This group is made of cellulose and starch-based bioplastics as well as PLA. For these materials, the literature data are notably scattered and do not allow us to derive any conclusive general remark about their biodegradability profile.
6. Conclusions
- The research on the topic is relatively new and has progressed considerably over the last two decades, moving from a general assessment of different biopolymers and their degradation to the evaluation of the environmental behavior of bioplastics and of the most suitable management strategies once they are discarded as wastes. It was also evident that interest in the topic has grown remarkably over the last two years, likely as a result of, among other factors, those related to the implementation of environmental policies on single-use plastic products in different countries all over the world. This testifies that the assessment of the environmental behavior of bioplastics is currently a hot topic that will deserve further attention in the years to come;
- The data extracted during the detailed analysis of the available literature (regarding the polymer characteristics, the testing conditions, the analytical techniques used to assess biodegradation, the observed biogas/methane production yield, and the estimated degree of biodegradation) indicated that the investigated bioplastics can be grouped into three main categories with regard to their response to anaerobic degradation (at least within the investigated conditions available):
- -
- PHAs and TPS in most cases display high levels of biodegradation regardless of the test conditions;
- -
- PBAT, PBS, PVA, and Mater-Bi show a low degree of conversion regardless of the temperature regime (mesophilic or thermophilic) of the degradation process;
- -
- PLA, PCL, and various PLA blends have a notably large variability in their biodegradation behavior, although this is observed to improve or to be less scattered when shifting to thermophilic conditions.
- At the current state of the art of biological treatment of bioplastics, the application of anaerobic digestion for the purpose of energy recovery would be feasible and economically viable for some selected types of bioplastics only. In particular, various types of PHAs, PLA, TPS, and cellulose-based polymers were found to display relatively high methane production yields, with average values between ~260 and ~380 L CH4/kgVS under mesophilic conditions and between ~170 and ~450 L CH4/kgVS under thermophilic conditions.
- The experimental investigations were mainly carried out on pure biopolymers or ad hoc synthesized blends, while studies of commercial products are currently much more limited. Understanding the behavior of commercial bioplastic products also requires detailed knowledge of the composition of the specific blend of concern and its influence on the biodegradation features. Since the proprietary formulation of commercial blends may vary—even remarkably, depending on the intended uses of the bioplastic material—it is extremely important to relate the nature of the polymeric matrix to its biodegradation characteristics;
- While anaerobic degradation was mainly monitored through measurements of the evolved methane/biogas, additional advanced analytical techniques would be useful to describe the complex mechanisms involved in the degradation pathways;
- Harmonizing the approaches to the evaluation of bioplastic degradation and the way of expressing data is recommended to facilitate the comparison of experimental results and allow a thorough understanding of the process;
- Most of the studies have been carried out under mesophilic conditions and in a batch mode at the laboratory scale; therefore, exploring the real behavior of bioplastics at a larger scale is a matter deserving more extensive exploration. Further attention should also be paid to the effect of the degradation conditions on the kinetics and yields of the transformations involved, which may also assist in the identification of potentially useful pre-treatments that may be applied to enhance biodegradability;
- With regard to the management of bioplastic waste, in a short-to-medium-term scenario in which the collection and treatment of such residues is envisaged to be performed together with biowaste, it would be of paramount importance to assess the quality of the final digestate and its potential ecotoxicity. This would be required to identify potential environmental issues related to the presence of residual bioplastics (including microparticles).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Class | Bioplastic Type | Size and Shape | T | Test Conditions | Time | Biogas/Methane Production | Degree of Biodegr. | Pre-Treatment | Biodegr. Eval. | Mass Loss | Analytical Techniques | Visual Insp. | Microb. Charact. | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (d) | (1) | (2) | (3) | (4) | (5) | (6) | (%) | (%) | ||||||||||
Cellulose-based | Bioceta (Cellulose acetate) | 5 × 5 mm, 90 μm of thickness film | 35 | Plastic: 600 mg L−1. Inoculum: domestic sewage sludge | 60 | - | 22 * | CH4 & biogas | [113] | ||||||||||
Cellulose-based | Sugar cane cellulosic fiber plates | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 391.1 | CH4 | [114] | |||||||||||
Cellulose-based | Sugar cane cellulosic fiber plates | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 342.6 | 48 h, acidic pretreatment (HCl) to pH = 2 | CH4 | |||||||||||
Cellulose-based | Sugar cane cellulosic fiber plates | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 339.9 | 48 h, alkaline pretreatment (NaOH) to pH = 12 | CH4 | |||||||||||
Cellulose-based | Cellulose-based metallised film | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 65 | - | 74.3 | 88.9 | [115] | ||||||||||
Cellulose-based | Cellulose-based heat-sealable film | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 65 | - | 86.6 | 98.3 | |||||||||||
Cellulose-based | Cellulose-based high barrier heat-sealable film | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 65 | - | 84 | 98.0 | |||||||||||
Cellulose-based | Cellulose-based non heat-sealable film | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 65 | - | 80.4 | 96.4 | |||||||||||
Cellulose-based | Cellulose diacetate film | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 65 | - | 8.9 | 10.3 | |||||||||||
Cellulose-based | Cellulosic plates | Plate | 35 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 44 | 311 | CH4 | 100 | x | [116] | |||||||||
Cellulose-based | Cellulosic plates | Plate | 35 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 30 | 304 | CH4 | 100 | x | ||||||||||
Cellulose-based | Cellulosic plates | Plate | 35 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater biosolids | 15 | 276 | CH4 | 99.9 | x | ||||||||||
Cellulose-based | Cellulose acetate | 25 × 25 mm | 37 | 400 g (ww) inoculum + 4.74 g (ww) CA; I/S = 2 (VS basis) | 30 | 519.3 | 106 | CH4 | x | [117] | |||||||||
Mater-Bi | Mater-Bi (PCL + starch, Novamont) | Pieces of plastic bag < 1 mm | 35 | Plastic: 1 g. Inoculum: 5 mL of pig slurry mixed with synthetic medium for methanogens and acclimated to mesophilic anaerobic condition | 90 | 33 | 6 | x | [12] | ||||||||||
Mater-Bi | Mater-Bi (Starch + PE, AF08H, Novamont) | 2 × 15 cm strips | 35 | Inoculum: Mixture of sewage sludge treating domestic sewage and paper sludge (3:1 ratio) | 40 | - | 32 | 53 | FT-IR; NMR; UV/VIS | x | [118] | ||||||||
Mater-Bi | Mater-Bi (Starch + PE, AF10H, Novamont) | 2 × 15 cm strips | 35 | Inoculum: Mixture of sewage sludge treating domestic sewage and paper sludge (3:1 ratio) | 40 | - | 30 | 53 | FT-IR; NMR; UV/VIS | x | |||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydrophilic resin) | Whole bag | 35 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: liquid digestate from an anaerobic digester fed with manure, agro-wastes and residues | 15 | 144 | CH4 | 27.5 | x | [116] | |||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydropilic resin) | Whole bag | 35 | Inoculum: liquid digestate from a full-scale mesophilic digester fed with manure and agro-wastes | 15 | 203 | Alkaline pretreatment (NaOH, 5% TS), 24 h | CH4 | 78.2 | x | |||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydropilic resin) | Shredded bag (1 × 1 cm) | 35 | Inoculum: liquid digestate from a full-scale mesophilic digester fed with manure and agro-wastes | 15 | 117 | Mechanical shredding | CH4 | 29.3 | x | |||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydropilic resin) | Pre-digested bag (1 × 1 cm) | 35 | Inoculum: liquid digestate from a full-scale mesophilic digester fed with manure and agro-wastes | 15 | 33 | Pre-digestion treatment (mesophilic) | CH4 | 4.8 | x | |||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydropilic resin) | Pre-digested bag (1 × 1 cm) | 35 | Inoculum: liquid digestate from a full-scale mesophilic digester fed with manure and agro-wastes | 15 | 27 | Alkaline pre-treatment (NaOH, 5% TS, 24 h) on pre-digested (mesophilic) samples | CH4 | −0.3 | x | |||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydropilic resin) | Whole bag | 35 | Inoculum: liquid digestate from a full-scale mesophilic digester fed with manure and agro-wastes, pre-acclimated | 15 | 42 | CH4 | x | |||||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydropilic resin) | Pre-digested bag (1 × 1 cm) | 35 | Inoculum: liquid digestate from a full-scale mesophilic digester fed with manure and agro-wastes, pre-acclimated | 15 | 66 | Pre-digestion treatment (mesophilic) | CH4 | x | ||||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydropilic resin) | Pre-digested bag (1 × 1 cm) | 35 | Inoculum: liquid digestate from a full-scale mesophilic digester fed with manure and agro-wastes, pre-acclimated | 15 | 70 | Alkaline pre-treatment (NaOH, 5% TS, 24 h) on pre-digested (mesophilic) samples | CH4 | x | ||||||||||
Mater-Bi | Mater-Bi (PCL+Starch+Glycerin, ZI01U, Novamont) | Film | 35 | Inoculum: anaerobic sludge from an anaerobic digester. Method: ASTM D 5511-94 | 81 | 203.6 | 21 | X | TGA, SEM | [119] | |||||||||
Mater-Bi | Mater-Bi (PCL+Starch+Glycerin, ZI01U, Novamont) | Pellets | 35 | Inoculum: anaerobic sludge from an anaerobic digester. Method: ASTM D 5511-94 | 81 | 96.4 | 10 | X | SEM | ||||||||||
Mater-Bi | Mater-Bi (Starch + PCL, Novamont) | 2 × 2 cm film 20 μm of thickness | 35 | 28 | 485.2 | 23 | X | 44.8 | FTIR, SEC, NMR, DSC | X | [70] | ||||||||
Mater-Bi | Mater-Bi ZF03U (PCL + starch, Novamont) | 5 × 5 mm 35 μm of thickness | 35 | Plastic: 600 and 400 mg L−1. Inoculum: domestic sewage sludge | 60 | 28 | CH4 & biogas | [113] | |||||||||||
Mater-Bi | Mater-Bi (Novamont) | 0.5–1 mm film | 35 | Plastic to inoculum ratio: 0.6–1 (TS basis). Inoculum: anaerobic sludge from an anaerobic digestion plant treating effluents from a brewery Method: ASTM D5526-94d. | 32 | 220 | [120] | ||||||||||||
Mater-Bi | Mater-Bi bags | 10 × 10 mm film | 37 | Inoculum: anaerobic sludge from an anaerobic digestion plant treating municipal wastewater | 180 | 30.4 | 2.9 | X | FTIR, DSC, microscopy | x | [121] | ||||||||
Mater-Bi | Mater-Bi coffee capsules | <1 mm | 38 | Inoculum: sludge from a wastewater treatment plant, acclimated in the lab at 38 °C. Digestion conditions: ISR = 2.7 (VS basis), VS content = 9 g/L | 100 | 67 | 12 | X | x | [95] | |||||||||
PBAT | PBAT | 2 × 2 cm film 20 μm of thickness | 35 | 28 | 0 | X | 44.8 | FTIR, SEC, NMR, DSC | x | [70] | |||||||||
PBAT | PBAT 93,000 g/mol (Ecoflex, BASF) | 5 × 5 mm film 70 μm of thickness | 37 | Inoculum: mesophilic anaerobic sludge (37 °C) from a municipal waste water-treatment plant | 126 | 2.2 * | X | 2.8 | DSC, XRD, GPC | [122] | |||||||||
PBAT | PBAT | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working V = 300 mL | 500 | 159.7 | 13.4 | CH4 | x | [95] | |||||||||
PBAT | 0.1–0.25 mm | 36 | Anaerobic aqueous conditions ISO 14853; working V = 1 L; 1 gTS/L inoculum + 150 mg/L test material | 77 | 0 | Biogas | [123] | ||||||||||||
PBS | PBES (MW 100,000, Sky Green) | 20 × 40 mm film | 35 | Inoculum: anaerobic digested sludge from a WWTP. Method: ASTM D5210 | 100 | 0 | X | 35 | [124] | ||||||||||
PBS | PBS (Sigma-Aldrich) | 125–250 μm | 37 | Plastic: 10 g. Inoculum: mesophilic digestate from a mesophilic anaerobic digester treating cow manure and green waste | 277 | 0 * | X | x | [100] | ||||||||||
PBS | PBS (Elson Green) | 20 × 40 mm film | 35 | Inoculum: anaerobic digested sludge from a WWTP. Method: ASTM D5210 | 100 | 0 | X | 28 | [124] | ||||||||||
PBS | PBS | 35 | Method: ASTM E1196-92 | 100 | 11 | 2 | CH4 & biogas | [125] | |||||||||||
PBS | PBS (PBE 003, NaturePlast,) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 0 | biogas | SEM | [126] | ||||||||||
PBS | PBS (Enpol G4560, IRE Chemical Ltd.) | 5 × 5 mm thin film (100 μm thickness) | 37 | Plastic: 100 mg. Inoculum: mesophilic anaerobic sludge from a wastewater treatment plant. Method: ISO 11734 | 113 | 2.2 | biogas | DSC, XRD, SEM | [127] | ||||||||||
PBS | PBS | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working volume = 300 mL | 500 | 0 | 0 | CH4 | x | [95] | |||||||||
PBS | 0.1–0.25 mm | 36 | Anaerobic aqueous conditions ISO 14853; working V = 1 L; 1 gTS/L inoculum + 150 mg/L test material | 77 | 3.1 | Biogas | [123] | ||||||||||||
PCL | PCL (Sigma-Aldrich) | 125–250 μm | 37 | 277 | 3 | X | [100] | ||||||||||||
PCL | PCL (Sigma-Aldrich) | 125–250 μm | 37 | 277 | 22 | X | |||||||||||||
PCL | PCL (MW 50,000 g.mol−1, Polyscience Inc.) | 27 mm of diameter 100 μm of thickness film | 39 | Plastic: 0.2 g. Inoculum: sludge from a laboratory anaerobic reactor treating wastewater from a sugar factory. Method: ASTM D 5210-93 | 42 | 7.5 * | X | 30 | [97] | ||||||||||
PCL | PCL (MW 50,000 g.mol−1, Polyscience Inc.) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic laboratory reactor fed with wastewater from sugar industry. Method: ASTM D 5210-91 | 42 | 16 | Biogas | 30 | x | [128] | |||||||||
PCL | 1,4-butanediol/adipic acid (MW 40,000, GBF) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic laboratory reactor fed with wastewater from sugar industry. Method: ASTM D 5210-91 | 42 | 1.1 | Biogas | 1.2 | x | ||||||||||
PCL | 1,4-butanediol (50 mol%) adipic acid (30 mol%)/Terephthalic acid (20 mol%) (MW 47,600, Hüls AG) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic laboratory reactor fed with wastewater from sugar industry. Method: ASTM D 5210-91 | 42 | 5.5 | Biogas | 0.5 | x | ||||||||||
PCL | PCL (MW 50,000 g.mol−1, Polyscience Inc.) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic digester of a municipal WWTP. Method: ASTM D 5210-91 | 42 | 17 | Biogas | 30 | x | ||||||||||
PCL | 1,4-butanediol/adipic acid (MW 40,000, GBF) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic digester of a municipal WWTP. Method: ASTM D 5210-91 | 42 | 11 | Biogas | 2.1 | x | ||||||||||
PCL | 1,4-butanediol (50 mol%) adipic acid (30 mol%)/Terephthalic acid (20 mol%) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic digester of a municipal WWTP. Method: ASTM D 5210-91 | 42 | 11 | Biogas | 1% | x | ||||||||||
PCL | PCL | 35 | Plastic: 10 mg.L−1. Inoculum: digestate from an anaerobic digester treating WWTP sludge | 122 | 0.2 | CH4 and biogas | [129] | ||||||||||||
PCL | PCL | 1 cm2 film pieces | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester fed with food waste and manure | 30 | 15.8 | 6.5 | CH4 | [130] | ||||||||||
PCL | PCL 40% TPS 60% | 1 cm2 film pieces | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester fed with food waste and manure | 30 | 133.3 | 32.3 | CH4 | |||||||||||
PCL | PCL 60% TPS 40% | 1 cm2 film pieces | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester fed with food waste and manure | 30 | 74.2 | 18.5 | CH4 | |||||||||||
PCL | PCL (Tone, Union Carbide) | 2 × 15 cm strips | 35 | Inoculum: Mixture of sewage sludge treating domestic sewage and paper sludge (3:1 ratio) | 40 | 5 | 6% | FTIR, NMR, UV/VIS, SEM | [118] | ||||||||||
PCL | Ecostarplus (starch + PE) | 2 × 15 cm strips | 35 | Inoculum: Mixture of sewage sludge treating domestic sewage and paper sludge (3:1 ratio) | 40 | 12 | 5% | FTIR; NMR; UV/VIS; SEM | |||||||||||
PCL | PCL (Tone, Union Carbide) | Powder | 35 | Inoculum: 2 mL of digestate from an anaerobic digester treating sewage sludge. Method: ISO 14853 | 28 | 0 | X | 0% | FTIR, SEC, NMR, DSC, SEM | [70] | |||||||||
PCL | PCL (CAPA 6500, Perstorp) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 3 | Biogas | DSC, SEM | [126] | ||||||||||
PCL | PCL (P787, Union Carbide) | 5 × 5 mm 55 μm of thickness and 250 μm powder | 35 | Plastic: 600 and 400 mg/L. Inoculum: domestic sewage sludge | 60 | 0 | CH4 & biogas | [113] | |||||||||||
PCL | PCL | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working volume = 300 mL | 500 | 366.9 | 49.9 | CH4 | x | [95] | |||||||||
PCL | 0.1–0.25 mm | 36 | Anaerobic aqueous conditions ISO 14853; working V = 1 L; 1 g TS/L inoculum + 150 mg/L test material | 77 | 4.5 | Biogas | [123] | ||||||||||||
PCL | film | 0.25 × 0.25 cm | 35 | ASTM D 5210-91; 150 mL working V + 100 mg polymer; flushed with N2 | 77 | 0 | Biogas | [131] | |||||||||||
PCL | film | 0.25 × 0.25 cm | 35 | ISO 11734; 150 mL working V + 100 mg polymer; flushed with N2 | 77 | 1 | Biogas | ||||||||||||
PCL | powder | 35 | 58.3 | 2 | Biogas | 6.5 | TGA, DSC, SEM | [132] | |||||||||||
PCL * | PCL-Starch blend (55% PCL, 30% Starch, 15% aliphatic polyester) | 35 | Plastic to inoculum ratio: 2 g VS/L, Inoculum: 20 mL digestate from a anaerobic digester treating sewage sludge. | 139 | 554 | 83 | CH4 & biogas | [125] | |||||||||||
PCL+PHO | PCL/PHO (85/15) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 4 | Biogas | DSC, SEM | [126] | ||||||||||
PCL+TPS | PCL/TPS (70/30) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 36 | Biogas | DSC, SEM | |||||||||||
PCL61/S-A26/G13 | PCL+starch+glycerol | 50 × 9(4) × 1 mm | 35 | 58.3 | 30.3 | Biogas | 30.6 | TGA, DSC, SEM, mech. properties | x | [132] | |||||||||
PCL61/S-GI26/G13 | PCL+starch+glycerol | 50 × 9(4) × 1 mm | 35 | 58.3 | 29.8 | Biogas | 30.4 | TGA, DSC, SEM | |||||||||||
PCL61/S-M26/G13 | PCL+starch+glycerol | 50 × 9(4) × 1 mm | 35 | 58.3 | 12.6 | Biogas | 13.8 | TGA, DSC, SEM | |||||||||||
PCL61/S-W26/G13 | PCL+starch+glycerol | 50 × 9(4) × 1 mm | 35 | 58.3 | 31.2 | Biogas | 30.7 | TGA, DSC, SEM | |||||||||||
PCL70/S-A30 | PCL+starch | 50 × 9(4) × 1 mm | 35 | 58.3 | 10.1 | Biogas | 11.9 | TGA, DSC, SEM | |||||||||||
PCL70/S-GI30 | PCL+starch | 50 × 9(4) × 1 mm | 35 | 58.3 | 10.4 | Biogas | 13.9 | TGA, DSC, SEM | |||||||||||
PCL70/S-M30 | PCL+starch | 50 × 9(4) × 1 mm | 35 | 58.3 | 5.6 | Biogas | 6.5 | TGA, DSC, SEM | |||||||||||
PCL70/S-W30 | PCL+starch | 50 × 9(4) × 1 mm | 35 | 58.3 | 10.7 | Biogas | 9.8 | TGA, DSC, SEM | |||||||||||
PHA | PHA (PHA-4100, Metabolix) | 1–2 mm wide pellets | 37 | Plastic to inoculum ratio: 4 g/L. Inoculum: sludge from a semi continuous anaerobic digester fed with food waste, olive, and cheese waste. Method: ASTM 5511-02 | 11 | 102 | Biogas | [133] | |||||||||||
PHA | PHA (PHA-4100, Metabolix) | 1–2 mm wide pellets | 37 | Plastic to inoculum ratio: 8 g/L. Inoculum: sludge from a semi continuous anaerobic digester fed with food waste, olive, and cheese waste. Method: ASTM 5511-02 | 11 | 95 | Biogas | ||||||||||||
PHA | PHA | PHA accumulated in activated sludge | 37 | Plastic: addition of 1 mL of PHA-accumulating sludge (30 g TS/L). Inoculum: 5 mL of sewage sludge from a WWTP | 15 | 250 | 53 | Biogas | [134] | ||||||||||
PHB | PHB (ENMAT Y3000, TianAn) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 199 | 50 | CH4 | [11] | ||||||||||
PHB | PHB (ENMAT) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 398 | 100 | 35 °C, addition of NaOH until pH 12 for 24 h | CH4 | ||||||||||
PHB | PHB (MIREL F1006, Metabolix) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 233 | 59 | CH4 | |||||||||||
PHB | PHB (Mirel F1006) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 359 | 90.9 | 35 °C, pH 7 for 48 h | CH4 | ||||||||||
PHB | PHB (Mango materials) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 316 | 80 | CH4 | |||||||||||
PHB | PHB (Mango materials) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 322 | 81.5 | 55 °C, addition of NaOH until pH = 10, 24 h | CH4 | ||||||||||
PHB | PHB (Mirel M2100, Metabolix) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 316 | 80 | CH4 | |||||||||||
PHB | PHB (Mirel M2100, Metabolix) | <0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 357 | 90.4 | 55 °C, addition of NaOH until pH = 12, 24 h | CH4 | ||||||||||
PHB | PHB (Sigma-Aldrich) | 125–250 μm | 37 | 9 | 90 | X | [100] | ||||||||||||
PHB | PHB (MW 540,000 g.mol−1, Biopol BX G08) | 25 mm of diameter 100 μm of thickness film | 37 | Plastic: 0.2 g. Inoculum: sludge from a laboratory anaerobic reactor treating wastewater from a sugar factory. Method: ASTM D 5210-91 | 9 | 100 | Biogas | 100 | [97] | ||||||||||
PHB | PHB (MW 540,000 g.mol−1, Biopol BX G08) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic laboratory reactor fed with wastewater from sugar industry. Method: ASTM D 5210-91 | 8 | 101 | Biogas | [128] | |||||||||||
PHB | PHB (MW 540,000 g.mol−1, Biopol BX G08) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic laboratory reactor fed with wastewater from sugar industry. Method: ASTM D 5210-92 | 42 | 101 | Biogas | 100 | |||||||||||
PHB | PHB (MW 540,000 g.mol−1, Biopol BX G08) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic digester of a municipal WWTP. Method: ASTM D 5210-91 | 8 | 100 | Biogas | ||||||||||||
PHB | PHB (MW 540,000 g.mol−1, Biopol BX G08) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic digester of a municipal WWTP. Method: ASTM D 5210-91 | 42 | 101 | Biogas | 100 | |||||||||||
PHB | PHB | Granular form | 35 | Plastic to inoculum ratio: 10 g VS g−1 VS. Inoculum: digestate from a WWTP anaerobic digester. | 23 | 100 | [135] | ||||||||||||
PHB | PHB | Powder | 35 | Plastic: 5 mg. Inoculum: anaerobically digested domestic sewage sludge | 16 | 87 | Biogas | [136] | |||||||||||
PHB | PHB (ENMAT Y1000, TianAn) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | - | 102 | Biogas | DSC, SEM | [126] | |||||||||
PHB | PHB (MW 539,000, Biopol BX G08) | 200 μm powder | 35 | Plastic: 400 mg L−1. Inoculum: domestic sewage sludge | 30 | - | 80 | CH4 & biogas | [113] | ||||||||||
PHB | PHB Biomer | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working volume = 300 mL | 50 | 383.4 | 64.3 | CH4 | x | [95] | |||||||||
PHB | PHB (K. D.) | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working volume = 300 mL | 25 | 491.5 | 80.1 | CH4 | x | ||||||||||
PHB | PHB (K.D.) | particles 1.01 mm (mean size) | 38 | I/S = 10 (VS basis) | 23 | 518 | 94 | CH4 | [99] | ||||||||||
PHB | PHB (K.D.) | particles 1.01 mm (mean size) | 38 | I/S = 4 (VS basis) | 23 | 483 | 88 | CH4 | |||||||||||
PHB | PHB (K.D.) | particles 1.01 mm (mean size) | 38 | I/S = 2.85 (VS basis) | 18 | 518 | 94 | CH4 | |||||||||||
PHB | PHB (K.D.) | particles 1.01 mm (mean size) | 38 | I/S = 2 (VS basis) | 38 | 468 | 85 | CH4 | |||||||||||
PHB | PHB (K.D.) | particles 1.01 mm (mean size) | 38 | I/S = 1 (VS basis) | 15 | 51 | 9 | CH4 | |||||||||||
PHB | 0.1–0.25 mm | 36 | Anaerobic aqueous conditions ISO 14853; working V = 1 L; 1 g TS/L inoculum + 150 mg/L test material | 77 | 83.9 | Biogas | [123] | ||||||||||||
PHB | 0.1–0.25 mm | 36 | Anaerobic standard test conditions—ISO 14852; polymer = 1 g VS/L | 77 | 495.8 | 85 | Biogas | ||||||||||||
PHB | 0.1–0.25 mm | 36 | Anaerobic standard test conditions—ISO 14852; polymer = 1 g VS/L | 100 | 815.7 | 78.4 | Biogas | ||||||||||||
PHB | 0.25–0.5 mm | 36 | Anaerobic standard test conditions—ISO 14852; polymer = 1 g VS/L | 100 | 759.3 | 72.9 | Biogas | ||||||||||||
PHB | 0.5–1 mm | 36 | Anaerobic standard test conditions—ISO 14852; polymer = 1 g VS/L | 100 | 648.9 | 62.3 | Biogas | ||||||||||||
PHB | Plates | 1.1 × 4.5 × 1.2 mm | 35 | Working V = 150 mL; polymer = 8 mg C/L | 85 | 1364 | 73.0 | Biogas | 100 | TGA, DSC, SEM | [137] | ||||||||
PHB | Plates | 1.1 × 4.5 × 1.2 mm | 35 | Working V = 150 mL; polymer = 4.225 mg C/L | 65 | 1253 | 67.0 | Biogas | TGA, DSC, SEM | ||||||||||
PHB | Plates | 1.1 × 4.5 × 1.2 mm | 35 | Working V = 150 mL; polymer = 4.665 mg C/L | 80 | 1546 | 82.8 | Biogas | 79.1 | TGA, DSC, SEM | |||||||||
PHB powder | 35 | Working V = 150 mL; polymer = 1 mg C/L | 1185 | 63.4 | Biogas | TGA, DSC, SEM | |||||||||||||
PHB powder | 35 | Working V = 150 mL; polymer = 1 mg C/L | 1274 | 68.0 | Biogas | TGA, DSC, SEM | |||||||||||||
PHB/PHV | Film 0.06 mm | 0.2–0.63 mm | 35 | ASTM D 5210-91; 150 mL working V + 100 mg polymer; flushed with N2 | 41 | 70 | Biogas | [131] | |||||||||||
PHB/PHV | Film 0.06 mm | 0.2–0.63 mm | 35 | ASTM D 5210-91; 150 mL working V + 100 mg polymer; flushed with 70% N2/30% CO2 | 33 | 64 | Biogas | ||||||||||||
PHB/PHV | Film 0.06 mm | 0.2–0.63 mm | 35 | ISO 11734; 150 mL working V + 100 mg polymer; flushed with N2 | 41 | 62 | Biogas | ||||||||||||
PHB/PHV | Film 0.06 mm | 0.2–0.63 mm | 35 | ISO 11734; 150 mL working V + 100 mg polymer; flushed with 70% N2/30% CO2 | 33 | 64 | Biogas | ||||||||||||
PHB/TBC (85/15) | Plates; TBC = tributyl citrate | 1.1 × 4.5 × 1.2 mm | 35 | Working V = 150 mL; polymer = 4.004 mg C/L | 190 | 93.8 | Biogas | FTIR, DSC, SEM | [137] | ||||||||||
PHB+PBS | PHB/PBS (50/50) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | - | 15 | Biogas | DSC, SEM | [126] | |||||||||
PHB+PCL | PHB/PCL (60/40) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | - | 38 | Biogas | DSC, SEM | ||||||||||
PHB+PHH | Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) 93% HB, 7% HHx | 5 × 5 × 1 mm Film | 38 | Plastic to inoculum ratio: 0.7–0.8 (VS basis). Inoculum: Digestate from a mesophilic anaerobic digester fed with sludge and fats | 80 | 483.8 | 77 | GPC | x | [138] | |||||||||
PHB+PHH | Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) 93.5% HB 6.5% HHx | 5 × 5 × 1 mm Flake | 38 | Plastic to inoculum ratio: 0.7–0.8 (VS basis). Inoculum: Digestate from a mesophilic anaerobic digester fed with sludge and fats | 40 | 337.5 | 54 | x | |||||||||||
PHB+PHH | Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) 93.5% HB 6.5% HHx | 5 × 5 × 1 mm Flake | 38 | Plastic to inoculum ratio: 0.7–0.8 (VS basis). Inoculum: Digestate from a mesophilic anaerobic digester fed with sludge and fats | 80 | 337.5 | 54 | 51.9 | |||||||||||
PHB+PHO | PHB/PHO (85/15) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | - | 92 | Biogas | DSC, SEM | [126] | |||||||||
PHBO | PHBO (90% PHB, 10% HO) | 35 | Plastic: 100 mg/L. Inoculum: digestate from an anaerobic digester treating WWTP sludge. | 60 | - | 88 | CH4 & biogas | [129] | |||||||||||
PHBV | PHBV (0.5% HV, ENMAT Y1000P) | 31.25 mm × 6.2 mm × 2.1 mm rectangular prism | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic digester. | 42 | 630 | 83 | CH4 | SEM, 3D imaging with µCT | [139] | |||||||||
PHBV | PHBV (ENMAT Y1000P China) | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | Neat PHBV | 80 | 94 | CH4 | 100 | SEM, 3D imaging with µCT | ||||||||||
PHBV | Maleated PHBV | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | Maleated PHBV | 80 | 95 | CH4 | 100 | SEM, 3D imaging with µCT | ||||||||||
PHBV | PHBV (0.5% HV ENMAT Y1000P) | 420–840 μm | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater | 20 | 580 | 86 | CH4 | [140] | ||||||||||
PHBV | PHBV (0.5% HV ENMAT Y1000P) | 3900 μm (pellets) | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater | 36 | 580 | 86 | Size reduction | CH4 | ||||||||||
PHBV | PHBV (0.5% HV ENMAT Y1000P) | 420–840 μm | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater | 20 | 580 | 86 | Size reduction | CH4 | ||||||||||
PHBV | PHBV (0.5% HV ENMAT Y1000P) | 250–420 μm | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater | 22 | 580 | 86 | Size reduction | CH4 | ||||||||||
PHBV | PHBV (0.5% HV ENMAT Y1000P) | 150–250 μm | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater | 19 | 580 | 86 | Size reduction | CH4 | ||||||||||
PHBV | PHBV (0.5% HV ENMAT Y1000P) | 10 μm | 37 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater | 23 | 580 | 86 | Size reduction | CH4 | ||||||||||
PHBV | PHBV (0.5% HV ENMAT Y1000P) | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | 42 | 630 | 83 | CH4 | 38 | DSC | [66] | |||||||||
PHBV | PHBV (MW 397,000 g.mol−1, Biopol BX P027) | 26 mm of diameter 100 μm of thickness film | 38 | Plastic: 0.2 g. Inoculum: sludge from a laboratory anaerobic reactor treating wastewater from a sugar factory. Method: ASTM D 5210-92 | 42 | 29 | Biogas | 60 | [97] | ||||||||||
PHBV | PHBV (MW 397,000 g.mol−1, Biopol BX P027) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic laboratory reactor fed with wastewater from sugar industry. Method: ASTM D 5210-91 | 42 | 29 | Biogas | 57 | [128] | ||||||||||
PHBV | PHBV (MW 397,000 g.mol−1, Biopol BX P027) | 19 mm of diameter film | 37 | Plastic: 35–40 mg. Inoculum: sludge from an anaerobic digester of a municipal WWTP. Method: ASTM D 5210-91 | 42 | 31 | Biogas | 63 | |||||||||||
PHBV | PHBV (PHB/HV; 92/8, w/w) | 5 × 60 mm film | 35 | Inoculum: anaerobic digested sludge from a WWTP. Method: ASTM D5210 | 20 | 85 | Biogas | [124] | |||||||||||
PHBV | Cellophane | 20 × 40 mm film | 35 | Inoculum: anaerobic digested sludge from a WWTP. Method: ASTM D5210 | 20 | 80 | Biogas | ||||||||||||
PHBV | PHBV (ICI) | 2 × 15 cm strips | 35 | Inoculum: Mixture of sewage sludge treating domestic sewage and paper sludge (3:1 ratio) | 40 | 55 | 29 | FT-IR; NMR; UV/VIS | x | [118] | |||||||||
PHBV | PHBV (13% HV) | Powder | 35 | Plastic: 5 mg. Inoculum: anaerobically digested domestic sewage sludge | 16 | 96 | Biogas | [136] | |||||||||||
PHBV | PHBV (20% HV) | Powder | 35 | Plastic: 5 mg. Inoculum: anaerobically digested domestic sewage sludge | 16 | 83 | Biogas | ||||||||||||
PHBV | PHBV (8.4% HV, ICI) | 46.4 μm | 35 | Plastic: 1% w/w, Inoculum: 10% w/w anaerobic sludge from a WWTP of a sugar factory | 30 | 95 | Biogas | [141] | |||||||||||
PHBV | PHBV | Pellets | 35 | Inoculum: 1:1 mixture of mesophilic and thermophilic digestate from lab-scale AD reactors. ISR = 1 (VS basis). Solids content in the reactor: 7.22% TS | 104 | 271 | SEM | [142] | |||||||||||
PHBV | 0.1–0.25 mm | 36 | Anaerobic aqueous conditions ISO 14853; working V = 1 L; 1 g TS/L inoculum + 150 mg/L test material | 77 | 81.2 | Biogas | [123] | ||||||||||||
PHBV | 0.1–0.25 mm | 36 | Anaerobic standard test conditions—ISO 14852; polymer = 1 g VS/L | 77 | 480.1 | 76.4 | Biogas | ||||||||||||
PHBV | 0.1–0.25 mm | 36 | Anaerobic standard test conditions—ISO 14852; polymer = 1 g VS/L | 100 | 792.3 | 73.2 | Biogas | ||||||||||||
PHBV | 0.25–0.5 mm | 36 | Anaerobic standard test conditions—ISO 14852; polymer = 1 g VS/L | 100 | 777.8 | 71.8 | Biogas | ||||||||||||
PHBV | 0.5–1 mm | 36 | Anaerobic standard test conditions —ISO 14852; polymer = 1 g VS/L | 100 | 748.8 | 69.1 | Biogas | ||||||||||||
PHBV+wood flour | 80% PHBV 20% oak wood flour | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | Addition of 20% oak wood flour | 50–63 | 84 | CH4 | 100 | SEM, 3D imaging with µCT | [139] | |||||||||
PHBV+wood flour | 80% maleated PHBV 20% oak wood flour | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | Maleated PHBV + addition of oak wood flour | 50–63 | 88 | CH4 | 100 | SEM, 3D imaging with µCT | ||||||||||
PHBV+wood flour | 80% PHBV 20% silane treated oak wood flour | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | Addition of silane treated oak wood flour | 50–63 | 83 | CH4 | 100 | SEM, 3D imaging with µCT | ||||||||||
PHBV+wood flour | 80% PHBV and 20% oak wood flour | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | Addition of 20% oak wood flour | 28 | 510 | 73 | CH4 | DSC | [66] | |||||||||
PHBV+wood flour | 60% PHBV and 40% oak wood flour | Rectangular prism 31.25 mm × 6.2 mm × 2.1 mm | 37 | Addition of 40% oak wood flour | 28 | 430 | 60 | CH4 | DSC | ||||||||||
PHO | PHO (Bioplastech R, Bioplastech) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 12 | Biogas | DSC, SEM | [126] | ||||||||||
PLA | PLA (Ingeo) | Pieces of plastic cup < 1 mm | 35 | Plastic: 1 g. Inoculum: 5 mL of pig slurry mixed with synthetic medium for methanogens and acclimated to mesophilic anaerobic condition | 90 | 0 | 0 | --- | 0 | [12] | |||||||||
PLA | PLA (Fabri-Kal) | Plastic cup ground to 3 mm | 37 | Plastic: 1 g. Inoculum: 10 mL of anaerobic inoculum | 60 | 2 | 0.4 | [143] | |||||||||||
PLA | PLA (Fabri-Kal) | Plastic cup ground to 3 mm | 37 | Plastic: 1 g. Inoculum: 10 mL of anaerobic inoculum | 56 | 90 | 19.30 | Steam exposition, 3 h 120 °C | |||||||||||
PLA | PLA (Ingeo 2003D, NatureWorks) | 0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 1 | 0 | CH4 | [11] | ||||||||||
PLA | PLA (Ingeo 2003D NatureWorks) | 0.15 mm | 35 | Plastic: 125 mg. Inoculum: 50 mL of lab inoculum fed with nutritive media and powdered milk | 40 | 86 | 23.9 | 90 °C, addition of NaOH until pH = 10, 48 h | CH4 | ||||||||||
PLA | PLA (Unitika) | 125–250 μm | 37 | 277 | 29 | X | [100] | ||||||||||||
PLA | PLA (Unitika) | 125–250 μm | 37 | 277 | 49 | X | |||||||||||||
PLA | PLA (NatureWorks) | 1–2 mm wide pellets | 37 | Plastic to inoculum ratio: 4 g/L. Inoculum: sludge from a semi continuous anaerobic digester fed with food waste, olive, and cheese waste. Method: ASTM 5511-02 | 20 | 5 | [133] | ||||||||||||
PLA | PLA (lab) | 20 × 40 mm film | 35 | Inoculum: anaerobic digested sludge from a WWTP. Method: ASTM D5210 | 100 | 0 | [124] | ||||||||||||
PLA | PLA (Argonne A) | 6 × 5 cm film | 35 | Inoculum: Mixture of sewage sludge treating domestic sewage and paper sludge (3:1 ratio) | 40 | 10 | 9 | FT-IR; NMR; UV/VIS | X | [118] | |||||||||
PLA | PLA (Argonne B) | 6 × 5 cm film | 35 | Inoculum: Mixture of sewage sludge treating domestic sewage and paper sludge (3:1 ratio) | 40 | 15 | 3 | FT-IR; NMR; UV/VIS | X | ||||||||||
PLA | PLA | Granules | 37 | Plastic: 30 mg. Inoculum: anaerobic sludge from a WWTP. Method: ASTM D 5210 | 100 | 60 | Biogas | [144] | |||||||||||
PLA | PLA (NatureWorks, Cargill) | 2 × 2 cm film 20 μm of thickness | 35 | 28 | 0 | X | 0 | FTIR, SEC, NMR, DSC | X | [70] | |||||||||
PLA | PLA (Biopolymer-4043D, NatureWorks) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 0 | Biogas | DSC, SEM | [126] | ||||||||||
PLA | PLA film | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater sludge | 65 | 18.8 | 20.2 | [115] | |||||||||||
PLA | PLA blend | Pellets | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater sludge | 65 | 2.6 | 3.0 | ||||||||||||
PLA | PLA (plastic cup) | 2 × 2 × 0.5 mm | 37 | Plastic to inoculum ratio: 2–4 kg VS/m3. Inoculum: mesophilic digestate from a mesophilic wastewater treatment plant digester. Method: EN ISO 11734:2003 | 280 | 564 | 66 | Biogas | FTIR, opt. microscopy | [145] | |||||||||
PLA | Mixture of PLA goods (dishes, glasses and cutlery) | 5 × 5 cm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 60 | 34 | CH4 | [10] | |||||||||||
PLA | Mixture of PLA goods (dishes, glasses and cutlery) | 5 × 5 cm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 90 | CH4 | 24 | FTIR | |||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 146 | 50.5 | 10.8 | CH4 | [146] | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 61.3 | 13.1 | Hydrothermal (1 g VS-PLA, T = 120 °C, 10 min, 10 mL water) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 111.5 | 23.8 | Hydrothermal (1 g VS-PLA, T = 120 °C, 30 min, 10 mL 1% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 136.1 | 29.1 | Hydrothermal (1 g VS-PLA, T = 120 °C, 60 min, 10 mL 5% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 249.9 | 53.4 | Hydrothermal (1 g VS-PLA, T = 120 °C, 120 min, 10 mL 10% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 161.3 | 34.5 | Hydrothermal (1 g VS-PLA, T = 160 °C, 10 min, 10 mL 1% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 262.8 | 56.2 | Hydrothermal (1 g VS-PLA, T = 160 °C, 30 min, 10 mL water) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 432.3 | 92.4 | Hydrothermal (1 g VS-PLA, T = 160 °C, 60 min, 10 mL 10% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 430.8 | 92.1 | Hydrothermal (1 g VS-PLA, T = 160 °C, 120 min, 10 mL 5% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 441.6 | 94.4 | Hydrothermal (1 g VS-PLA, T = 200 °C, 10 min, 10 mL 5% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 456 | 97.5 | Hydrothermal (1 g VS-PLA, T = 200 °C, 30 min, 10 mL 10% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 421.3 | 90.1 | Hydrothermal (1 g VS-PLA, T = 200 °C, 60 min, 10 mL water) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 442 | 94.5 | Hydrothermal (1 g VS-PLA, T = 200 °C, 120 min, 10 mL 1% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 460.1 | 98.4 | Hydrothermal (1 g VS-PLA, T = 240 °C, 10 min, 10 mL 10% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 449.8 | 96.2 | Hydrothermal (1 g VS-PLA, T = 240 °C, 30 min, 10 mL 5% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 396.4 | 84.8 | Hydrothermal (1 g VS-PLA, T = 240 °C, 60 min, 10 mL 1% NaOH) | CH4 | ||||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 40 | 351.5 | 75.2 | Hydrothermal (1 g VS-PLA, T = 240 °C, 120 min, 10 mL water) | CH4 | ||||||||||
PLA | PLA bags | 10 × 10 mm film | 37 | Inoculum: anaerobic sludge from an anaerobic digester treating municipal wastewater | 180 | 25.2 | 2.3 * | Biogas | SEM | [121] | |||||||||
PLA | PLA film | 1–2 mm, thickness 80 μm | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 60 | 5 | 34 | Biogas | SEM | [147] | ||||||||||
PLA | PLA film | 1–2 mm, thickness 80 μm | Not spec. | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 60 | 148.3 | 230 | Alkaline (1 g PLA, 10 mL 0.5 M NaOH, 2.5 d, room T) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 58.28 | 5.5 | Biogas | SEM | ||||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 126.72 | 8.7 * | Thermal (45 °C, 12 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 125.21 | 8.8 * | Thermal (60 °C, 12 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 164.74 | 11.3 * | Thermal + alkaline (45 °C, 0.5 M NaOH, 10% w/v PLA, 12 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 212.86 | 15.0 * | Thermal + alkaline (60 °C, 0.5 M NaOH, 10% w/v PLA, 12 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 215.47 | 20.2 * | Thermal + alkaline (60 °C, 0.5 M NaOH, 10% w/v PLA, 24 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 230.21 | 21.6 * | Thermal + alkaline (45 °C, 0.25 M NaOH, 10% w/v PLA, 32.2 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 126.15 | 11.8 * | Thermal + alkaline (20 °C, 0.25 M NaOH, 10% w/v PLA, 12 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 132.42 | 12.4 * | Thermal + alkaline (45 °C, 0.25 M NaOH, 10% w/v PLA, 12 h) | Biogas | SEM | |||||||||
PLA | PLA film | 3–5 mm, thickness 80 μm | 30 | Inoculum: mesophilic digestate from a UASB anaerobic digester treating drink production effluents | 90 | 147.14 | 13.8 * | Thermal + alkaline (70 °C, 0.25 M NaOH, 10% w/v PLA, 12 h) | Biogas | SEM | |||||||||
PLA | Commercial PLA items | 2 mm | 37 | ISR=2 (VS basis) | 250 | 130 | CH4 | [114] | |||||||||||
PLA | Commercial PLA items | 2 mm | 37 | ISR=2 (VS basis) | 250 | 125 | 48 h, acidic pretreatment (HCl) to pH = 2 | CH4 | |||||||||||
PLA | Commercial PLA items | 2 mm | 37 | ISR=2 (VS basis) | 250 | 101 | 48 h, alkaline pretreatment (NaOH) to pH = 12 | CH4 | |||||||||||
PLA | Crystalline PLA | cups, 2 × 2 cm | 37 | Inoculum: anaerobic digestate from a digester treating wastewater | 70 | 687 | CH4 | 98.2 | [148] | ||||||||||
PLA | Crystalline PLA | cups, 2 × 2 cm | 37 | Inoculum: anaerobic digestate from a digester treating wastewater | 70 | 928 | Alkaline pretreatment (NaOH), 21 °C, pH = 12.96, 15 d | CH4 | |||||||||||
PLA | NaturePlast | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working V = 300 mL | 500 | 438 | 80.3 | CH4 | x | [95] | |||||||||
PLA | Total Corbion | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working V = 300 mL | 500 | 344.4 | 74.7 | CH4 | x | ||||||||||
PLA | Commercial spoons | 2–5 mm | 38 | 49 | 63.4 | CH4 | FTIR, DSC | [149] | |||||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 520 | 429 | 82 | CH4 | SEM | [150] | |||||||||
PLA | NaturePlast | 1–2 mm | 38 | BMP tests with I/S = 2.85 (VS basis) | 520 | 427 | 82 | CH4 | SEM | ||||||||||
PLA | NaturePlast | 0.8–1 mm | 38 | BMP tests with I/S = 2.85 (VS basis) | 520 | 441 | 84 | CH4 | SEM | ||||||||||
PLA | NaturePlast | 0.5–0.8 mm | 38 | BMP tests with I/S = 2.85 (VS basis) | 520 | 441 | 84 | CH4 | SEM | ||||||||||
PLA | NaturePlast | 0.3–0.5 mm | 38 | BMP tests with I/S = 2.85 (VS basis) | 520 | 455 | 87 | CH4 | SEM | ||||||||||
PLA | NaturePlast | 0.05–0.3 mm | 38 | BMP tests with I/S = 2.85 (VS basis) | 520 | 460 | 88 | CH4 | SEM | ||||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 14 | 3 | CH4 | SEM | ||||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 389 | 75 | 150 °C 6 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 382 | 73 | 150 °C + 5% Ca(OH)2 1 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 370 | 71 | 120 °C 24 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 391 | 75 | 120 °C + 5% Ca(OH)2 6 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 147 | 28 | 90 °C 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 351 | 67 | 90 °C + 5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 24 | 5 | 70 °C 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 25 | 328 | 63 | 70 °C + 5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 21 | 4 | CH4 | SEM | ||||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 136 | 26 | 90 °C 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 354 | 68 | 90 °C + 5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 352 | 67 | 90 °C + 2.5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 260 | 50 | 90 °C + 1.25% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 178 | 34 | 90 °C + 0.5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 48 | 9 | 70 °C 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 338 | 65 | 70 °C + 5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 381 | 73 | 70 °C + 2.5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 286 | 55 | 70 °C + 1.25% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | NaturePlast | Granules | 38 | BMP tests with I/S = 2.85 (VS basis) | 30 | 167 | 32 | 70 °C + 0.5% Ca(OH)2 48 h | CH4 | SEM | |||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 38 | I/S = 10 (VS basis) | 400 | 426 | 82 | CH4 | [99] | ||||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 38 | I/S = 4 (VS basis) | 400 | 385 | 74 | CH4 | |||||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 38 | I/S = 2.85 (VS basis) | 400 | 401 | 77 | CH4 | |||||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 38 | I/S = 2 (VS basis) | 400 | 417 | 80 | CH4 | |||||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 38 | I/S = 1 (VS basis) | 400 | 404 | 77 | CH4 | |||||||||||
PLA | 0.1–0.25 mm | 36 | Anaerobic aqueous conditions ISO 14853; working V = 1 L; 1 gTS/L inoculum + 150 mg/L test material | 77 | 4.6 | Biogas | [123] | ||||||||||||
PLA | 1.1 × 4.5 × 1.2 mm | 35 | Working V = 150 mL; polymer = 4.151 mg C/L | 140 | 0 | 0 | Biogas | 0 | FTIR, DSC, SEM | [137] | |||||||||
PLA | PLA (crystallinity 35%) | 35 | 170 | 0 | 0 | 0 | CH4 | [151] | |||||||||||
PLA | PLA (crystallinity 50%) | 35 | 170 | 0 | 0 | 0 | CH4 | ||||||||||||
PLA | PLA (amorphous) | 35 | 170 | 189 | 40 | CH4 | |||||||||||||
PLA blend | Ecovio® (PLA + fossil biodegradable Ecoflex® plastic) coffee capsules | <1 mm | 38 | Inoculum: sludge from a wastewater treatment plant, acclimated in the lab at 38 °C. Digestion conditions: ISR = 2.7 (VS basis), VS content = 9 g/L | 100 | 127 | 24 | X | [95] | ||||||||||
PLA/PCL | PLA/PCL (80/20) | 0.1–0.25 mm | 36 | Method ISO 14853; working V = 1 L; 1 g TS/L inoculum + 150 mg/L test material | 77 | 0 | Biogas | [123] | |||||||||||
PLA+PBS | PLA/PBS (80/20) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 0 | Biogas | DSC, SEM | [126] | ||||||||||
PLA+PCL | PLA/PCL (80/20) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 0 | Biogas | DSC, SEM | |||||||||||
PLA+PHB | PLA/PHB (80/20) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 0 | Biogas | DSC, SEM | |||||||||||
PLA+PHO | PLA/PHO (80/15) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 2 | Biogas | DSC, SEM | |||||||||||
PVA | Film | 0.25 × 0.25 cm | 35 | ASTM D 5210-91; 150 mL working V + 100 mg polymer; flushed with N2 | 77 | 8 | Biogas | [131] | |||||||||||
PVA | Film | 0.25 × 0.25 cm | 35 | ISO 11734; 150 mL working V+ 100 mg polymer; flushed with N2 | 77 | 10 | Biogas | ||||||||||||
PVA | PVA (Dupont) | 5 × 5 × 1 mm film | 38 | Plastic: 2 g. Inoculum: supernatant from a laboratory scale digester fed with a mixture of primary domestic sludge and food waste | 100 | 5 | --- | --- | --- | [152] | |||||||||
Starch-based | Vegemat® coffee capsules | <1 mm | 38 | Inoculum: sludge from a wastewater treatment plant, acclimated in the lab at 38 °C. Digestion conditions: ISR = 2.7 (VS basis), VS content = 9 g/L | 100 | 92 | 18 | CH4 | x | [95] | |||||||||
Starch blend | Starch (25% amylose) and PVA blend | Film | 35 | Plastic: 20 g. Inoculum: digestate from a wastewater treatment plant. Method: ASTM D5210-92. | 25 | 52 | [153] | ||||||||||||
Starch blend | High-amylose starch (80% amylose)-PVA blend | Film | 35 | Plastic: 20 g. Inoculum: digestate from a wastewater treatment plant. Method: ASTM D5210-92. | 20 | 54 | |||||||||||||
Starch blend | Starch (from wheat)/PVOH | Foam | 37 | Substrate to inoculum ratio: 1 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester | 10 | 270 | 72.1 | CH4 | [154] | ||||||||||
Starch blend | Starch (from potato)/PVOH | Foam | 37 | Substrate to inoculum ratio: 1 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester | 10 | 265 | 68.6 | CH4 | |||||||||||
Starch blend | Starch (from maize)/PVOH | Foam | 37 | Substrate to inoculum ratio: 1 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester | 10 | 248 | 75.4 | CH4 | |||||||||||
Starch blend | Starch:PVOH blends (90/10%) | 5 × 5 × 1 mm film | 38 | Plastic: 2 g. Inoculum: supernatant from a laboratory scale digester fed with a mixture of primary domestic sludge and food waste | 100 | 140 | [152] | ||||||||||||
Starch blend | Starch:PVOH blends (75/25%) | 5 × 5 × 1 mm film | 38 | Plastic: 2 g. Inoculum: supernatant from a laboratory scale digester fed with a mixture of primary domestic sludge and food waste | 100 | 118 | |||||||||||||
Starch blend | Starch:PVOH blends (50/50%) | 5 × 5 × 1 mm film | 38 | Plastic: 2 g. Inoculum: supernatant from a laboratory scale digester fed with a mixture of primary domestic sludge and food waste | 100 | 60 | |||||||||||||
Starch blend | Starch-based film blend 1 | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater sludge | 65 | 18.3 | 18.0 | [115] | |||||||||||
Starch blend | Starch-based film blend 2 | 1 × 1 cm film | 37 | Plastic to inoculum ratio: 0.25 (VS basis). Inoculum: digestate from a mesophilic digester treating municipal wastewater sludge | 65 | 10.2 | 10.6 | ||||||||||||
Starch blend | Starch-based blend | 4.3 mm | 37 | ISR: 4 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 250 | 35.9 ● | CH4 | [155] | ||||||||||
Starch blend | Starch-based blend | 0.72 mm | 37 | ISR: 4 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 246 | 35.4 ● | CH4 | |||||||||||
Starch blend | Starch-based blend | 4.3 mm | 37 | ISR: 3 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 197 | 28.3 ● | CH4 | |||||||||||
Starch blend | Starch-based blend | 0.72 mm | 37 | ISR: 3 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 186 | 26.7 ● | CH4 | |||||||||||
Starch blend | Starch-based blend | 7.87 mm | 37 | ISR: 4 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 182 | 26.2 ● | CH4 | |||||||||||
Starch blend | Starch-based blend | 7.87 mm | 37 | ISR: 3 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 161 | 23.1 ● | CH4 | |||||||||||
Starch blend | Starch-based blend | 4.3 mm | 37 | ISR: 2 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 166 | 23.9 ● | CH4 | |||||||||||
Starch blend | Starch-based blend | 0.72 mm | 37 | ISR: 2 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 157 | 22.6 ● | CH4 | |||||||||||
Starch blend | Starch-based blend | 7.87 mm | 37 | ISR: 2 (VS basis). Inoculum: digestate from a mesophilic lab-scale digester | 26 | 135 | 19.4 ● | CH4 | |||||||||||
Starch blend | Starch-based shopping bags | film, 5 × 5 cm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 60 | 119 | 29.5 | CH4 | FTIR | [10] | |||||||||
Starch blend | Starch-based shopping bags | film, 5 × 5 cm | 37 | Mesophilic digestate from a full-scale dry anaerobic digester treating OFMSW | 90 | CH4 | 67.3 | FTIR | |||||||||||
Starch blend | Commercial spoons | 2–5 mm | 38 | 49 | 50.38 | CH4 | FTIR, DSC | [149] | |||||||||||
starch blend | Granulate | 0.2–0.63 mm | 35 | ASTM D 5210-91; 150 mL working V + 100 mg polymer; flushed with N2 | 41 | 57 | Biogas | [131] | |||||||||||
starch blend | Granulate | 0.2–0.63 mm | 35 | ASTM D 5210-91; 150 mL working V + 100 mg polymer; flushed with 70% N2/30% CO2 | 33 | 55 | Biogas | ||||||||||||
starch blend | Granulate | 0.2–0.63 mm | 35 | ISO 11734; 150 mL working V+ 100 mg polymer; flushed with N2 | 41 | 54.6 | Biogas | ||||||||||||
starch blend | Granulate | 0.2–0.63 mm | 35 | ISO 11734; 150 mL working V+ 100 mg polymer; flushed with 70% N2/30% CO2 | 33 | 49 | Biogas | ||||||||||||
Starch-based | Starch-based bags | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 200.9 | CH4 | [114] | |||||||||||
Starch-based | Starch-based bags | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 203.9 | 48 h, acidic pretreatment (HCl) to pH = 2 | CH4 | |||||||||||
Starch-based | Starch-based bags | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 158 | 48 h, alkaline pretreatment (NaOH) to pH = 12 | CH4 | |||||||||||
Starch-based | Starch-based cutlery | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 312.5 | CH4 | ||||||||||||
Starch-based | Starch-based cutlery | 2 mm | 37 | ISR = 2 (VS basis) | 250 | 302.5 | 48 h, acidic pretreatment (HCl) to pH = 2 | CH4 | |||||||||||
Starch-based | Starch-based cutlery | 2 mm | 37 | ISR=2 (VS basis) | 250 | 252.9 | 48 h, alkaline pretreatment (NaOH) to pH = 12 | CH4 | |||||||||||
TPS | TPS (Bioplast TPS, BIOTEC) | <2 × 2 cm | 35 | Inoculum: sludge from a WWTP. Method: ISO 14853 | 56 | 98% | biogas | DSC, SEM | [126] | ||||||||||
TPS | TPS | 1 mm sheet | 38 | I/S = 2.85 (VS basis); working V = 300 mL | 30 | 309.5 | 82.6% | CH4 | x | [95] |
Class | Bioplastic Type | Size and Shape | T | Test Conditions | Time | Biogas/Methane Production | Degree of Biodegr. | Pre-Treatment | Biodegr. Eval. | Mass Loss | Analytical Techniques | Visual Insp. | Microb. Charact. | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (1) | (2) | (3) | (4) | (%) | (%) | |||||||||||
Cellulose-based | Cellulose | 1 × 1 cm film | 55 | Plastic to inoculum ratio: 0.5. Inoculum: sludge from a waste management company | 35 | 280 | 18.3 | biogas | x | [156] | |||||||
Cellulose-based | Cellulose | 2 × 2 cm film | 55 | Plastic to inoculum ratio: 0.5. Inoculum: sludge from a waste management company | 35 | 260 | 17.1 | biogas | x | ||||||||
Cellulose-based | Cellulose | 3 × 3 cm film | 55 | Plastic to inoculum ratio: 0.5. Inoculum: sludge from a waste management company | 35 | 250 | 16.3 | biogas | x | x | |||||||
Starch-based | Vegemat® coffee capsules | <1 mm | 58 | Inoculum: sludge from a wastewater treatment plant, acclimated in the lab at 58 °C. Digestion conditions: ISR = 2.7 (VS basis), VS content = 9 g/L | 100 | 355 | 69 | CH4 | [95] | ||||||||
Mater-Bi | Mater-Bi coffee capsules | <1 mm | 58 | Inoculum: sludge from a wastewater treatment plant, acclimated in the lab at 58 °C. Digestion conditions: ISR = 2.7 (VS basis), VS content = 9 g/L | 100 | 257 | 47 | CH4 | x | ||||||||
Mater-Bi | Mater-Bi (60% starch, 40% hydrophilic resin) | entire bag | 55 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: liquid digestate from mesophilic anaerobic digester fed with manure, agro-wastes, and residues shifted progressively to thermophilic condition | 30 | 186 | CH4 | 28.5 | x | [116] | |||||||
Mater-Bi | Mater-Bi (PCL + starch, Novamont) | Small piece of plastic bags <1 mm | 55 | Plastic: 1 g. Inoculum: 5 mL of pig slurry mixed with synthetic medium for methanogens and acclimated to mesophilic anaerobic condition | 90 | 303 | 55 | --- | x | [12] | |||||||
Mater-Bi | Shopper | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 15 | 95 | 22.5 | CH4 | 21.7 | FTIR | x | [157] | |||||
Mater-Bi | Shopper | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 30 | 139 | 25.5 | CH4 | 28.7 | FTIR | x | ||||||
Mater-Bi | Shopper | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 60 | 165 | 29.2 | CH4 | 30.0 | FTIR | x | ||||||
Mater-Bi | Shopper | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 30 | 142 | 25.1 | CH4 | 26.8 | FTIR | x | [158] | |||||
Mater-Bi | Shopper | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 60 | 194 | 34.4 | CH4 | 35.0 | FTIR | x | ||||||
Mater-Bi | Shopper | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 90 | 224 | 40 | CH4 | 37.8 | FTIR | x | ||||||
PBAT | Commercial PBAT | 2 × 2 mm, thickness 0.1 mm | 52 | Inoculum: mixture of soil (70%) and anaerobic sludge (30%) from a municipal wastewater treatment plant. PBAT addition: 1% wt. | 75 | --- | 9.3 | SEM | x | [159] | |||||||
PBAT | PBAT 93 000 g/mol (Ecoflex, BASF) | 5 × 5 mm film 70 μm of thickness | 55 | Inoculum: mesophilic anaerobic sludge (37 °C) from a municipal waste water-treatment plant acclimated to thermophilic temperature (55 °C) for two weeks | 126 | 8.3 | biogas | 8.5 | DSC, XRD | [122] | |||||||
PBAT | PBAT | 1 mm sheet | 58 | I/S = 2.85 (VS basis); working volume = 300 mL | 100 | 11.05 | 1.7 | CH4 | x | [95] | |||||||
PBS | Commercial PBS | 2 × 2 mm, thickness 0.1 mm | 52 | Inoculum: mixture of soil (70%) and anaerobic sludge (30%) from a municipal wastewater treatment plant. PBS addition: 1% wt. | 75 | --- | 36.2 | SEM | x | [159] | |||||||
PBS | PBS (PBE 003, NaturePlast | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 90 | 12 | biogas | DSC, SEM | [126] | ||||||||
PBS | PBS (Enpol G4560, IRE Chemical Ltd.) | 5 × 5 mm thin film (100 μm) | 55 | Plastic: 50 mg. Inoculum: mesophilic anaerobic sludge from a wastewater treatment plant acclimated to thermophilic temperature | 113 | 20.2 | biogas | DSC, XRD, SEM | [127] | ||||||||
PBS | PBS (Enpol G4560, IRE Chemical Ltd.) | 5 × 5 mm thick film (1.02 mm) | 55 | Plastic: 50 mg. Inoculum: mesophilic anaerobic sludge from a wastewater treatment plant acclimated to thermophilic temperature | 113 | 20.1 | biogas | 24.8 | DSC, XRD, SEM | ||||||||
PBS | PBS (Enpol G4560, IRE Chemical Ltd.) | Powder (320 μm) | 55 | Plastic: 50 mg. Inoculum: mesophilic anaerobic sludge from a wastewater treatment plant acclimated to thermophilic temperature | 113 | 18.1 | biogas | DSC, XRD, SEM | |||||||||
PBS | PBS (Enpol G4560, IRE Chemical Ltd.) | 5 × 5 mm thin film (100 μm) | 55 | Plastic: 50 mg. Inoculum: mesophilic anaerobic sludge from a wastewater treatment plant shifted to thermophilic temperature with addition of a PBS acclimated inoculum from a previous experiment | 113 | 23.3 | biogas | DSC, XRD, SEM | |||||||||
PBS | PBS (Enpol G4560, IRE Chemical Ltd.) | 5 × 5 mm thick film (1.02 mm) | 55 | Plastic: 50 mg. Inoculum: mesophilic anaerobic sludge from a wastewater treatment plant shifted to thermophilic temperature with addition of a PBS acclimated inoculum from a previous experiment | 113 | 22 | biogas | 25.4 | DSC, XRD, SEM | ||||||||
PBS | PBS (Enpol G4560, IRE Chemical Ltd.) | Powder (320 μm) | 55 | Plastic: 50 mg. Inoculum: mesophilic anaerobic sludge from a wastewater treatment plant shifted to thermophilic temperature with addition of a PBS acclimated inoculum from a previous experiment | 113 | 10.3 | biogas | DSC, XRD, SEM | |||||||||
PBS | PBS (Sigma-Aldrich) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Pre-incubation of the inoculum with 20 mL of sludge acclimated to PLA | 100 | 3 | biogas | x | [101] | ||||||||
PBS | PBS | 1 mm sheet | 58 | I/S = 2.85 (VS basis); working volume = 300 mL | 100 | 0 | 0 | CH4 | x | [95] | |||||||
PCL | PCL (Mn 58.1 kg.mol−1) | 10 × 10 × 0.7 mm film | 55 | Plastic to inoculum ratio: 0.38 g COD/g VSS. Inoculum: thermophilic digested sludge from a digester | 140 | 663 | 60 | biogas | DSC, SEM | [160] | |||||||
PCL | PCL (Mn 38. kg.mol−1) | Powder | 55 | 80 | 643 | 54 | biogas | DSC, SEM | |||||||||
PCL | PCL (Mn 13 kg.mol−1) | 55 | 70 | 676 | 57 | biogas | DSC, SEM | ||||||||||
PCL | PCL (CAPA 6500, Perstorp) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 127 | 95 | biogas | DSC, SEM | [126] | ||||||||
PCL | PCL (Mw 65,000, Aldrich) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C | 47 | 697 | 92 * | biogas | [161] | ||||||||
PCL | PCL (Sigma-Aldrich) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Pre-incubation of the inoculum with 20 mL of sludge acclimated to PLA | 45 | 84 | biogas | x | [101] | ||||||||
PCL | PCL | 1-cm2 film | 52 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester fed with food wastes and manure shifted to thermophilic temperature (10 days) | 30 | 44.4 | 11.3 | CH4 | [130] | ||||||||
PCL | PCL | 1 mm sheet | 58 | I/S = 2.85 (VS basis); working volume = 300 mL | 100 | 0 | 0 | CH4 | x | [95] | |||||||
PCL | PCL (Mw 65,000, Aldrich) | <125 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C | 38.5 | 88 * | Size red. | biogas | [161] | ||||||||
PCL | PCL (Mw 65,000, Aldrich) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C | 58.5 | 85 * | Size red. | biogas | |||||||||
PCL | PCL (Mw 65,000, Aldrich) | 250–500 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C | 65 | 81 * | Size red. | biogas | |||||||||
PCL+PHO | PCL/PHO (85/15) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 66 | 85 | biogas | DSC, SEM | [126] | ||||||||
PCL+TPS | PCL/TPS (70/30) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 80 | 68 | biogas | DSC, SEM | |||||||||
PCL+TPS | 80% PCL 20% TPS | 1-cm2 film | 52 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester fed with food wastes and manure shifted to thermophilic temperature (10 days) | 30 | 104 | 26.2 | biogas | DSC, SEM | [130] | |||||||
PHB | PHB (ENMAT Y1000, TiTAN) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 127 | 92 | biogas | DSC, SEM | [126] | ||||||||
PHB | PHB (Sigma-Aldrich) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Pre-incubation of the inoculum with 20 mL of sludge acclimated to PLA | 18 | 88 | biogas | x | [101] | ||||||||
PHB | PHB Biomer | 1 mm sheet | 58 | I/S = 2.85 (VS basis); working V = 300 mL | 45 | 350.8 | 57.6 | CH4 | x | [95] | |||||||
PHB | PHB K. D. | 1 mm sheet | 58 | I/S = 2.85 (VS basis); working V = 300 mL | 49 | 399.1 | 72.3 | CH4 | x | ||||||||
PHB+PBS | PHB/PBS (50/50) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 121 | 78 | biogas | DSC, SEM | [126] | ||||||||
PHB+PCL | PHB/PCL (60/40) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 80 | 104 | biogas | DSC, SEM | |||||||||
PHB+PHO | PHB/PHO (85/15) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 66 | 87 | biogas | DSC, SEM | |||||||||
PHBV | PHBV | Pellets | 55 | Inoculum: 1:1 mixture of mesophilic and thermophilic digestate from lab-scale digesters. ISR = 1 (VS basis). Solids content in the reactor: 7.22% TS | 104 | 80.5 | --- | SEM | [142] | ||||||||
PHBV | Commercial PHBV | 2 × 2 mm, thickness 0.1 mm | 52 | Inoculum: mixture of soil (70%) and anaerobic sludge (30%) from a municipal wastewater treatment plant. PHBV addition: 1% wt. | 75 | --- | 100.0 | SEM | x | [159] | |||||||
PHO | PHO (Bioplastech R, Bioplastech) | <2 × 2 cm | 55 | Method: high solid anaerobic digestion (ISO 15985) | 50 | 6 | biogas | DSC, SEM | [126] | ||||||||
PLA | Commercial PLA blend (80% PLA, 20% additives) | <2 mm | 55 | Mesophilic digestate from a full-scale anaerobic digestere treating sewage sludge | 146 | 442.6 | 94.8 | CH4 | [146] | ||||||||
PLA | Commercial PLA | 2 × 2 mm, thickness 0.1 mm | 52 | Inoculum: mixture of soil (70%) and anaerobic sludge (30%) from a municipal wastewater treatment plant. PLA addition: 1% wt. | 75 | --- | 60.0 | SEM | x | [159] | |||||||
PLA | PLA (Mn 44.5 kg/mol) | 10 × 10 × 0.7 mm film | 55 | Plastic to inoculum ratio: 0.15 g COD/g VSS. Inoculum: thermophilic digested sludge from a digester | 120 | 677 | 74 | biogas | DSC, SEM | [160] | |||||||
PLA | PLA (Mn 3.4 kg/mol) | Powder | 55 | Plastic to inoculum ratio: 0.15 g COD/g VSS. Inoculum: thermophilic digested sludge from a digester | 90 | 520 | 56 | biogas | DSC, SEM | ||||||||
PLA | PLA (Mn 0.35 kg/mol) | Powder | 55 | Plastic to inoculum ratio: 0.15 g COD/g VSS. Inoculum: thermophilic digested sludge from a digester | 30 | 625 | 84 | biogas | DSC, SEM | ||||||||
PLA | PHB (Biopol) | 2 × 2 cm | 52 | Plastic: 3–5 g. Inoculum: anaerobic digester for solid waste | 20 | 73 | biogas | [144] | |||||||||
PLA | PLA | 2 × 2 cm | 52 | Plastic: 3–5 g. Inoculum: anaerobic digester for solid waste | 40 | 60 | biogas | ||||||||||
PLA | PLA | 1 × 1, 2 × 2, 3 × 3 cm rigid pieces | 55 | Plastic to inoculum ratio: 0.5. Inoculum: sludge from a waste management plant | 35 | 20 | 0 | biogas | x | [156] | |||||||
PLA | PLA (Luminy L130, Mw = 130 kDa) | Pellets | 55 | Plastic: 3 g. Inoculum: sludge from a thermophilic anaerobic digester treating food waste, plant residues, and other organic waste products | 104 | 224 | CH4 | 70.0 | x | [102] | |||||||
PLA | PLA (Luminy L175, Mw = 175 kDa) | Pellets | 55 | Plastic: 3 g. Inoculum: sludge from a thermophilic anaerobic digester treating food waste, plant residues, and other organic waste products | 104 | 266 | CH4 | 77.7 | |||||||||
PLA | PLA (Biopolymer-4043D, Nature Works) | <2 × 2 cm | 55 | Plastic: 15 g. Inoculum: 1 kg of digestate from a thermophilic reactor treating household waste. | 80 | 88 | biogas | DSC, SEM | [126] | ||||||||
PLA | PLA film 25 μm of thickness (Unitaka) | Powder 125–250 μm | 55 | Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Addition of 20 mL of acclimated sludge to PLA thermophilic digestion during the pre-incubation | 73 | 782 | 84.1 * | biogas | [162] | ||||||||
PLA | PLA (H-400, Mitsui Chemical) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Undiluted inoculum used | 82 | 469 | 91 * | biogas | [161] | ||||||||
PLA | PLA (H-400, Mitsui Chemical) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Diluted inoculum used | 107 | 388 | 79 * | biogas | |||||||||
PLA | PLA (H-400, Mitsui Chemical) | 125–250 μm | 55 | Plastic: 5 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Diluted inoculum used | 112 | 374 | 80 * | biogas | |||||||||
PLA | PLA (Ingeo) | Small piece of plastic bags <1 mm | 55 | Plastic: 1 g. Inoculum: 5 mL of pig slurry mixed with synthetic medium for methanogens and acclimated to mesophilic anaerobic condition | 90 | 267 | 56 | --- | x | [12] | |||||||
PLA | PLA (Fabri-Kal Inc.) | Plastic cup ground to 3 mm | 58 | Plastic: 1 g. Inoculum: 10 mL of anaerobic inoculum | 56 | 187 | 40 | [143] | |||||||||
PLA | PLA (Unitika) | 125–250 μm | 55 | Plastic: 10 g. Inoculum: digestate from a mesophilic anaerobic digester treating cow manure and green waste acclimated to 55 °C. Pre-incubation of the inoculum with 20 mL of sludge acclimated to PLA | 80 | 82 | biogas | x | [101] | ||||||||
PLA | PLA (NatureWorks 4043D) | Sheets | 52 | Plastic to inoculum ratio: 0.5 (VS basis). Inoculum: digestate from a mesophilic anaerobic digester treating industrial food waste and manure | 36 | 409 | 90 | CH4 | [163] | ||||||||
PLA | PLA (plastic cup) | 2 × 2 × 0.5 mm | 58 | Plastic to inoculum ratio: 2–4 kg VS/m3. Inoculum: digestate from a mesophilic anaerobic digester treating wastewater treatment acclimated to 58 °C for 14 days. Method: EN ISO 11734:2003 | 60 | 835 | 90 | biogas | FTIR, opt. microscopy | [145] | |||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 58 | I/S = 10 (VS basis) | 100 | 456 | 87.3 | CH4 | x | [99] | |||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 58 | I/S = 4 (VS basis) | 100 | 423 | 81.0 | CH4 | x | ||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 58 | I/S = 2.85 (VS basis) | 100 | 390 | 74.7 | CH4 | x | ||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 58 | I/S = 2 (VS basis) | 100 | 404 | 77.4 | CH4 | x | ||||||||
PLA | PLA (NaturePlast) | particles 1.01 mm (mean size) | 58 | I/S = 1 (VS basis) | 100 | 374 | 71.6 | CH4 | x | ||||||||
PLA | cup | 10 × 10 mm | 55 | untreated | 100 | 453 | 97 | FTIR, DSC, opt. microscopy | [82] | ||||||||
PLA | PLA (cutlery) | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 15 | 56 | 6.6 | CH4 | 6.0 | FTIR | x | [157] | |||||
PLA | PLA (dish) | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 15 | 44 | 6.1 | CH4 | 7.8 | FTIR | x | ||||||
PLA | PLA (cutlery) | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 30 | 154 | 21.5 | CH4 | 23.3 | FTIR | x | ||||||
PLA | PLA (dish) | 2.5 × 2.5 cm | 55 | 300 mL inoculum + 3 g bioplastic | 30 | 108 | 19.1 | CH4 | 19.7 |