Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukai, T.; Nakamura, S. Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 1999, 38, 5735–5739. [Google Scholar] [CrossRef]
- Wang, R.J.; Wang, C.Y.; Feng, Y.T. Effective geometric size and bond-loss effect in nanoelasticity of GaN nanowires. Int. J. Mech. Sci. 2017, 130, 267–273. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.; Xiu, X.; Zhang, L.; Zhang, R.; Zhang, Y.; Su, J.; Xie, Z.; Liu, B.; Shan, Y. Strain in GaN epi-layer grown by hydride vapor phase epitaxy. Spectrosc. Spectr. Anal. 2013, 33, 2105–2108. [Google Scholar]
- Kumar, A.; Kanjilal, D.; Kumar, V.; Singh, R. Defect formation in GaN epitaxial layers due to swift heavy ion irradiation. Radiat. Eff. Defects Solids 2011, 166, 739–742. [Google Scholar] [CrossRef]
- Ai, W.S.; Zhang, L.M.; Jiang, W.; Peng, J.X.; Chen, L.; Wang, T.S. Raman study of InxGa1−xN(x=0.32–0.9) films irradiated with Xe ions at room temperature and 773 K. Nucl. Instrum. Methods Phys. Res. Sect. B 2018, 415, 48–53. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Zhang, C.H.; Li, J.J.; Meng, Y.C.; Yang, Y.T.; Song, Y.; Ding, Z.N.; Yan, T.X. Damage to epitaxial GaN layer on Al2O3 by 290-MeV 238U32+ ions irradiation. Sci. Rep. 2018, 8, 4121. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Zhang, C.H.; Xian, Y.Q.; Liu, J.; Ding, Z.N.; Yan, T.X.; Chen, Y.G.; Su, C.H.; Li, J.Y.; Liu, H.P. Degradation mechanisms of optoelectric properties of GaN via highly-charged 209Bi33+ ions irradiation. Appl. Surf. Sci. 2018, 440, 814–820. [Google Scholar] [CrossRef]
- Fujikane, M.; Leszczyński, M.; Nagao, S.; Nakayama, T.; Yamanaka, S.; Niihara, K.; Nowak, R. Elastic-plastic transition during nanoindentation in bulk GaN crystal. J. Alloy. Compd. 2008, 450, 405–411. [Google Scholar] [CrossRef]
- Huang, J.; Xu, K.; Fan, Y.M.; Niu, M.T.; Zeng, X.H.; Wang, J.F.; Yang, H. Nanoscale anisotropic plastic deformation in single crystal GaN. Nanoscale Res. Lett. 2012, 7, 150. [Google Scholar] [CrossRef]
- Schiøtz, J.; Di Tolla, F.D.; Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 1998, 391, 561–563. [Google Scholar] [CrossRef]
- Lupinacci, A.; Chen, K.; Li, Y.; Kunz, M.; Jiao, Z.; Was, G.S.; Abad, M.D.; Minor, A.M.; Hosemann, P. Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction. J. Nucl. Mater. 2015, 458, 70–76. [Google Scholar] [CrossRef]
- Hosemann, P.; Shin, C.; Kiener, D. Small scale mechanical testing of irradiated materials. J. Mater. Res. 2015, 30, 1231–1245. [Google Scholar] [CrossRef]
- Jin, K.; Xia, Y.; Crespillo, M.; Xue, H.; Zhang, Y.; Gao, Y.F.; Bei, H. Quantifying early stage irradiation damage from nanoindentation pop-in tests. Scr. Mater. 2018, 157, 49–53. [Google Scholar] [CrossRef]
- Gil, E.; André, Y.; Cadoret, R.; Trassoudaine, A. Hydride vapor phase epitaxy for current III–V and nitride semiconductor compound issues. In Handbook of Crystal Growth, 2nd ed.; Kuech, T.F., Ed.; North-Holland: Boston, MA, USA, 2015; pp. 51–93. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determinning hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Bei, H.; Xia, Y.Z.; Barabash, R.I.; Gao, Y.F. A tale of two mechanisms: Strain-softening versus strain-hardening in single crystals under small stressed volumes. Scr. Mater. 2016, 110, 48–52. [Google Scholar] [CrossRef]
- Geetha, D.; Sophia, P.J.; Radhika, R.; Arivuoli, D. Evaluation of nanoindentation and nanoscratch characteristics of GaN/InGaN epilayers. Mater. Sci. Eng. A 2017, 683, 64–69. [Google Scholar] [CrossRef]
- Fujikane, M.; Yokogawa, T.; Nagao, S.; Nowak, R. Strain rate controlled nanoindentation examination and incipient plasticity in bulk GaN crystal. Jpn. J. Appl. Phys. 2013, 52, 08JJ01. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Kucheyev, S.O.; Bradby, J.E.; Williams, J.S.; Jagadish, C.; Swain, M.V.; Li, G. Deformation behavior of ion-beam-modified GaN. Appl. Phys. Lett. 2001, 78, 156–158. [Google Scholar] [CrossRef]
- Xiao, X.; Xiao, C.; Xia, X. Force-depth relationships with irradiation effect during spherical nano-indentation: A theoretical analysis. J. Nucl. Mater. 2020, 531, 152012. [Google Scholar] [CrossRef]
- Sekido, K.; Ohmura, T.; Zhang, L.; Hara, T.; Tsuzaki, K. The effect of interstitial carbon on the initiation of plastic deformation of steels. Mater. Sci. Eng. A 2011, 530, 396–401. [Google Scholar] [CrossRef]
- Jian, S.-R.; Ke, W.-C.; Juang, J.-Y. Mechanical characteristics of Mg-doped GaN thin films by nanoindentation. Nanosci. Nanotechnol. Lett. 2012, 4, 598–603. [Google Scholar] [CrossRef]
- Pöhl, F. Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation. Sci. Rep. 2019, 9, 15350. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Shang, F.; Wan, Q.; Yan, Y. A molecular dynamics study on indentation response of single crystalline wurtzite GaN. J. Appl. Phys. 2018, 124, 115102. [Google Scholar] [CrossRef]
- Bradby, J.E.; Williams, J.S.; Swain, M.V. Pop-in events induced by spherical indentation in compound semiconductors. J. Mater. Res. 2004, 19, 380–386. [Google Scholar] [CrossRef]
- Mason, J.K.; Lund, A.C.; Schuh, C.A. Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 2006, 73, 054102. [Google Scholar] [CrossRef]
- Schuh, C.A.; Mason, J.K.; Lund, A.C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 2005, 4, 617–621. [Google Scholar] [CrossRef]
- Wen, M.; Zhang, L.; An, B.; Fukuyama, S.; Yokogawa, K. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel. Phys. Rev. B 2009, 80, 094113. [Google Scholar] [CrossRef]
- Field, J.S.; Swain, M.V. A simple predictive model for spherical indentation. J. Mater. Res. 1993, 8, 297–306. [Google Scholar] [CrossRef]
- Lu, J.; Ren, H.; Deng, D.; Wang, Y.; Chen, K.J.; Lau, K.; Zhang, T. Thermally activated pop-in and indentation size effects in GaN films. J. Phys. D: Appl. Phys. 2012, 45, 085301. [Google Scholar] [CrossRef]
- Nowak, R.; Pessa, M.; Suganuma, M.; Leszczynski, M.; Grzegory, I.; Porowski, S.; Yoshida, F. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Appl. Phys. Lett. 1999, 75, 2070–2072. [Google Scholar] [CrossRef]
- Gao, F.; He, J.; Wu, E.; Liu, S.; Yu, D.; Li, D.; Zhang, S.; Tian, Y. Hardness of covalent crystals. Phys. Rev. Lett. 2003, 91, 015502. [Google Scholar] [CrossRef] [PubMed]
- Burnett, P.J.; Page, T.F. Criteria for mechanical property modifications of ceramic surfaces by ion implantation. Radiat. Eff. 1986, 97, 283–296. [Google Scholar] [CrossRef]
- Reyes-Martinez, M.A.; Abdelhady, A.L.; Saidaminov, M.I.; Chung, D.Y.; Bakr, O.M.; Kanatzidis, M.G.; Soboyejo, W.O.; Loo, Y.-L. Time-dependent mechanical response of APbX3 (A = Cs, CH3NH3; X = I, Br) single crystals. Adv. Mater. 2017, 29, 1606556. [Google Scholar] [CrossRef] [PubMed]
- Tsui, T.; Volinsky, A.A. (Eds.) Small Scale Deformation Using Advanced Nanoindentation Techniques; MDPI AG: Basel, Switzerland, 2019. [Google Scholar]
- Xiao, X.; Terentyev, D.; Chu, H.; Duan, H. Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: A review and perspective. Acta Mech. Sin. 2020, 36, 397–411. [Google Scholar] [CrossRef]
Fluence D | Hardness H | τmax | Mean Value of τmax | Pc | Mean Value of Pc | V1 | ∆h | K |
---|---|---|---|---|---|---|---|---|
(1015 cm−2) | (GPa) | (GPa) | (GPa) | (μN) | (μN) | (Å3) | (nm) | (μN/nm) |
0 | 19.2 ± 0.2 | 11.0–14.5 | 13.1 | 423.3−982.4 | 712.8 | 7.24 (=0.22b3) | 0.5–6.2 | 81.5 ± 2.0 |
0.72 | 21.1 ± 0.4 | 11.2–14.2 | 13.0 | 447.4–907.9 | 703.4 | 8.52 (=0.26b3) | 0.6–4.5 | 108.4 ± 4.7 |
1.4 | 22.1 ± 0.2 | 11.3–14.6 | 13.3 | 461.4–994.4 | 745.6 | 8.16 (=0.25b3) | 0.7–4.5 | 121.9 ± 3.6 |
2.4 | 22.6 ± 0.3 | 11.6–15.8 | 14.1 | 501.8–1261.4 | 899.1 | 7.77 (=0.24b3) | 0.7–4.6 | 142.6 ± 3.4 |
4.8 | 22.8 ± 0.5 | 11.5–15.5 | 14.0 | 491.5–1187.1 | 867.6 | 7.40 (=0.23b3) | 0.4–4.7 | 143.5 ± 3.3 |
9.6 | 23.2 ± 0.3 | 11.7–15.9 | 14.5 | 518.0–1277.5 | 967.3 | 8.47 (=0.26b3) | 0.7–4.2 | 149.2 ± 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Zhang, X.; Peng, S.; Jin, F.; Wan, Q.; Xue, J.; Yi, X. Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis. Materials 2022, 15, 1210. https://doi.org/10.3390/ma15031210
Dong Z, Zhang X, Peng S, Jin F, Wan Q, Xue J, Yi X. Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis. Materials. 2022; 15(3):1210. https://doi.org/10.3390/ma15031210
Chicago/Turabian StyleDong, Zhaohui, Xiuyu Zhang, Shengyuan Peng, Fan Jin, Qiang Wan, Jianming Xue, and Xin Yi. 2022. "Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis" Materials 15, no. 3: 1210. https://doi.org/10.3390/ma15031210
APA StyleDong, Z., Zhang, X., Peng, S., Jin, F., Wan, Q., Xue, J., & Yi, X. (2022). Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis. Materials, 15(3), 1210. https://doi.org/10.3390/ma15031210