p-ZnO/n-ZnMgO Nanoparticle-Based Heterojunction UV Light-Emitting Diodes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, Y.-S.; Kang, J.-W.; Hwang, D.-K.; Park, S.-J. Recent Advances in ZnO-Based Light-Emitting Diodes. IEEE Trans. Electron. Devices 2010, 57, 26–41. [Google Scholar] [CrossRef]
- Özgür, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Lim, J.-H.; Kang, C.-K.; Kim, K.-K.; Park, I.-K.; Hwang, D.-K.; Park, S.-J. UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering. Adv. Mater. 2006, 18, 2720–2724. [Google Scholar] [CrossRef]
- Sun, J.C.; Zhao, J.Z.; Liang, H.W.; Bian, J.M.; Hu, L.Z.; Zhang, H.Q.; Liang, X.P.; Liu, W.F.; Du, G.T. Realization of Ultraviolet Electroluminescence from ZnO Homojunction with N-ZnO/p-ZnO:As/GaAs Structure. Appl. Phys. Lett. 2007, 90, 121128. [Google Scholar] [CrossRef]
- Kong, J.; Chu, S.; Olmedo, M.; Li, L.; Yang, Z.; Liu, J. Dominant Ultraviolet Light Emissions in Packed ZnO Columnar Homojunction Diodes. Appl. Phys. Lett. 2008, 93, 132113. [Google Scholar] [CrossRef]
- Wei, Z.P.; Lu, Y.M.; Shen, D.Z.; Zhang, Z.Z.; Yao, B.; Li, B.H.; Zhang, J.Y.; Zhao, D.X.; Fan, X.W.; Tang, Z.K. Room Temperature P-n ZnO Blue-Violet Light-Emitting Diodes. Appl. Phys. Lett. 2007, 90, 042113. [Google Scholar] [CrossRef]
- Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S.F.; Fuke, S.; Segawa, Y.; et al. Repeated Temperature Modulation Epitaxy for P-Type Doping and Light-Emitting Diode Based on ZnO. Nat. Mater. 2005, 4, 42–46. [Google Scholar] [CrossRef]
- Nakahara, K.; Akasaka, S.; Yuji, H.; Tamura, K.; Fujii, T.; Nishimoto, Y.; Takamizu, D.; Sasaki, A.; Tanabe, T.; Takasu, H.; et al. Nitrogen Doped MgxZn1−xO/ZnO Single Heterostructure Ultraviolet Light-Emitting Diodes on ZnO Substrates. Appl. Phys. Lett. 2010, 97, 013501. [Google Scholar] [CrossRef]
- Fujita, Y.; Yanase, S.; Nishikori, H.; Hiragino, Y.; Furubayashi, Y.; Lin, J.; Yoshida, T. Near Ultraviolet Light Emitting Diodes Using ZnMgO:N/ZnO Hetero-Junction Grown by MOVPE. J. Cryst. Growth 2017, 464, 226–230. [Google Scholar] [CrossRef]
- Hiragino, Y.; Tanaka, T.; Takeuchi, H.; Takeuchi, A.; Lin, J.; Yoshida, T.; Fujita, Y. Synthesis of Nitrogen-Doped ZnO Nanoparticles by RF Thermal Plasma. Solid-State Electron. 2016, 118, 41–45. [Google Scholar] [CrossRef]
- Ou, Q.; Shinji, K.; Ogino, A.; Nagatsu, M. Enhanced Photoluminescence of Nitrogen-Doped ZnO Nanoparticles Fabricated by Nd: YAG Laser Ablation. J. Phys. Appl. Phys. 2008, 41, 205104. [Google Scholar] [CrossRef]
- Chavillon, B.; Cario, L.; Renaud, A.; Tessier, F.; Cheviré, F.; Boujtita, M.; Pellegrin, Y.; Blart, E.; Smeigh, A.; Hammarström, L.; et al. P-Type Nitrogen-Doped ZnO Nanoparticles Stable under Ambient Conditions. J. Am. Chem. Soc. 2012, 134, 464–470. [Google Scholar] [CrossRef]
- Senthilkumar, O.; Yamauchi, K.; Senthilkumar, K.; Yamamae, T.; Fujita, Y.; Nishimoto, N. UV-Blue Light Emission from ZnO Nanoparticles. J. Korean Phys. Soc. 2008, 53, 46–49. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Senthilkumar, O.; Morito, S.; Ohba, T.; Fujita, Y. Synthesis of Zinc Oxide Nanoparticles by Dc Arc Dusty Plasma. J. Nanoparticle Res. 2012, 14, 1205. [Google Scholar] [CrossRef]
- Itohara, D.; Shinohara, K.; Yoshida, T.; Fujita, Y. P-Channel and n-Channel Thin-Film-Transistor Operation on Sprayed ZnO Nanoparticle Layers. J. Nanomater. 2016, 2016, e8219326. [Google Scholar] [CrossRef]
- Shafiqul, I.M.; Deep, R.; Lin, J.; Yoshida, T.; Fujita, Y. The Role of Nitrogen Dopants in ZnO Nanoparticle-Based Light Emitting Diodes. Nanomaterials 2022, 12, 358. [Google Scholar] [CrossRef]
- Fujita, Y.; Moriyama, K.; Hiragino, Y.; Furubayashi, Y.; Hashimoto, H.; Yoshida, T. Electroluminescence from Nitrogen Doped ZnO Nanoparticles. Phys. Status Solidi C 2014, 11, 1260–1262. [Google Scholar] [CrossRef]
- Shafiqul, I.M.; Deep, R.; Lin, J.; Yoshida, T.; Fujita, Y. Demonstration and Evaluation of p-Type and n-Type ZnO Nanoparticles-Based Homojunction UV Light-Emitting Diodes. Phys. Status Solidi RRL 2022, 16, 2100556. [Google Scholar] [CrossRef]
- Pan, J.; Chen, J.; Huang, Q.; Khan, Q.; Liu, X.; Tao, Z.; Zhang, Z.; Lei, W.; Nathan, A. Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs. ACS Photonics 2016, 3, 215–222. [Google Scholar] [CrossRef]
- Cho, I.; Jung, H.; Jeong, B.G.; Chang, J.H.; Kim, Y.; Char, K.; Lee, D.C.; Lee, C.; Cho, J.; Bae, W.K. Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes. ACS Nano 2017, 11, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zheng, J.; Zhao, J.; Yang, Z.; Li, C.; Guan, X.; Yang, W.; Shang, M.; Wu, T. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer. ACS Appl. Mater. Interfaces 2017, 9, 15605–15614. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.; Feng, D.; Chen, L.; Fang, Y.; Shen, H.; Du, Z. Bandgap Tunable Zn1−xMgxO Thin Films as Electron Transport Layers for High Performance Quantum Dot Light-Emitting Diodes. J. Mater. Chem. C 2017, 5, 4724–4730. [Google Scholar] [CrossRef]
- Cohn, A.W.; Kittilstved, K.R.; Gamelin, D.R. Tuning the Potentials of “Extra” Electrons in Colloidal n-Type ZnO Nanocrystals via Mg2+ Substitution. J. Am. Chem. Soc. 2012, 134, 7937–7943. [Google Scholar] [CrossRef]
- Chen, N.B.; Sui, C.H. Recent Progress in Research on MgxZn1–XO Alloys. Mater. Sci. Eng. B 2006, 126, 16–21. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kang, J.-W.; Kim, B.-H.; Park, S.-J. Enhanced Ultraviolet Emission of MgZnO/ZnO Multiple Quantum Wells Light-Emitting Diode by p-Type MgZnO Electron Blocking Layer. Opt. Express 2013, 21, 31560. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kang, J.-W.; Kim, B.-H.; Na, D.-K.; Lee, S.-J.; Park, S.-J. Improved Electroluminescence from ZnO Light-Emitting Diodes by p-Type MgZnO Electron Blocking Layer. Opt. Express 2013, 21, 11698. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-C.; Liao, C.-H.; Chueh, Y.-L.; Lai, C.-C.; Chen, L.-H.; Tsiang, R.C.-C. Synthesis and Characterization of ZnO/ZnMgO Multiple Quantum Wells by Molecular Beam Epitaxy. Opt. Mater. Express 2013, 3, 237. [Google Scholar] [CrossRef]
- Makino, T.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Shiroki, R.; Tamura, K.; Yasuda, T.; Koinuma, H. Band Gap Engineering Based on MgxZn1−xO and CdyZn1−yO Ternary Alloy Films. Appl. Phys. Lett. 2001, 78, 1237–1239. [Google Scholar] [CrossRef]
- Yoshida, T.; Maruful, I.M.; Fujita, Y. Trial of Ga-Doping on ZnO Nanoparticles by Thermal Treatment with Ga2O3 Nanoparticles. E-J. Surf. Sci. Nanotechnol. 2020, 18, 12–17. [Google Scholar] [CrossRef]
- Qiu, X.; Li, L.; Zheng, J.; Liu, J.; Sun, X.; Li, G. Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+. J. Phys. Chem. C 2008, 112, 12242–12248. [Google Scholar] [CrossRef]
- Arshad, M.; Meenhaz Ansari, M.; Ahmed, A.S.; Tripathi, P.; Ashraf, S.S.Z.; Naqvi, A.H.; Azam, A. Band Gap Engineering and Enhanced Photoluminescence of Mg Doped ZnO Nanoparticles Synthesized by Wet Chemical Route. J. Lumin. 2015, 161, 275–280. [Google Scholar] [CrossRef]
- Olson, D.C.; Shaheen, S.E.; White, M.S.; Mitchell, W.J.; van Hest, M.F.a.M.; Collins, R.T.; Ginley, D.S. Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells. Adv. Funct. Mater. 2007, 17, 264–269. [Google Scholar] [CrossRef]
- Rao, L.S.; Rao, T.V.; Naheed, S.; Rao, P.V. Structural and Optical Properties of Zinc Magnesium Oxide Nanoparticles Synthesized by Chemical Co-Precipitation. Mater. Chem. Phys. 2018, 203, 133–140. [Google Scholar] [CrossRef]
- Denton, A.R.; Ashcroft, N.W. Vegard’s Law. Phys. Rev. A 1991, 43, 3161–3164. [Google Scholar] [CrossRef]
- Momida, H.; Oguchi, T. Effects of Lattice Parameters on Piezoelectric Constants in Wurtzite Materials: A Theoretical Study Using First-Principles and Statistical-Learning Methods. Appl. Phys. Express 2018, 11, 041201. [Google Scholar] [CrossRef]
- Vashaei, Z.; Minegishi, T.; Suzuki, H.; Hanada, T.; Cho, M.W.; Yao, T.; Setiawan, A. Structural Variation of Cubic and Hexagonal MgxZn1−xO Layers Grown on MgO(111)/c-Sapphire. J. Appl. Phys. 2005, 98, 054911. [Google Scholar] [CrossRef]
- Wang, X.; Saito, K.; Tanaka, T.; Nishio, M.; Nagaoka, T.; Arita, M.; Guo, Q. Energy Band Bowing Parameter in MgZnO Alloys. Appl. Phys. Lett. 2015, 107, 022111. [Google Scholar] [CrossRef]
- Ivetić, T.B.; Dimitrievska, M.R.; Finčur, N.L.; Đačanin Lj, R.; Gúth, I.O.; Abramović, B.F.; Lukić-Petrović, S.R. Effect of Annealing Temperature on Structural and Optical Properties of Mg-Doped ZnO Nanoparticles and Their Photocatalytic Efficiency in Alprazolam Degradation. Ceram. Int. 2014, 40, 1545–1552. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature Dependence of the Energy Gap in Semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Janotti, A.; Segev, D.; Van de Walle, C.G. Effects of Cation d States on the Structural and Electronic Properties of III-Nitride and II-Oxide Wide-Band-Gap Semiconductors. Phys. Rev. B 2006, 74, 045202. [Google Scholar] [CrossRef]
- Morkoç, H.; Özgür, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series|Book Series Home. Available online: https://www.springer.com/series/284 (accessed on 26 January 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiqul, I.M.; Yoshida, T.; Fujita, Y. p-ZnO/n-ZnMgO Nanoparticle-Based Heterojunction UV Light-Emitting Diodes. Materials 2022, 15, 8348. https://doi.org/10.3390/ma15238348
Shafiqul IM, Yoshida T, Fujita Y. p-ZnO/n-ZnMgO Nanoparticle-Based Heterojunction UV Light-Emitting Diodes. Materials. 2022; 15(23):8348. https://doi.org/10.3390/ma15238348
Chicago/Turabian StyleShafiqul, Islam Mohammad, Toshiyuki Yoshida, and Yasuhisa Fujita. 2022. "p-ZnO/n-ZnMgO Nanoparticle-Based Heterojunction UV Light-Emitting Diodes" Materials 15, no. 23: 8348. https://doi.org/10.3390/ma15238348
APA StyleShafiqul, I. M., Yoshida, T., & Fujita, Y. (2022). p-ZnO/n-ZnMgO Nanoparticle-Based Heterojunction UV Light-Emitting Diodes. Materials, 15(23), 8348. https://doi.org/10.3390/ma15238348