Structural Formation of Alkali-Activated Materials Based on Thermally Treated Marl and Na2SiO3
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Design
2.3. Methods
3. Results and Discussion
3.1. Characterization of the Thermally Treated Marl
3.2. Microstructure of Alkali-Activated Material
Spectra | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | Loss of Ignition |
---|---|---|---|---|---|---|---|
1 | 11.46 | 0.00 | 19.49 | 54.26 | 0.00 | 2.34 | 12.46 |
2 | 6.29 | 0.00 | 15.72 | 57.93 | 0.00 | 9.01 | 11.05 |
3 | 1.14 | 0.23 | 0.29 | 2.19 | 0.00 | 41.97 | 54.19 |
4 | 2.23 | 0.52 | 0.91 | 16.70 | 0.18 | 39.59 | 39.87 |
5 | 0.85 | 0.55 | 0.56 | 6.69 | 0.00 | 42.13 | 49.22 |
6 | 0.82 | 0.00 | 0.56 | 4.97 | 0.00 | 39.96 | 53.69 |
3.3. Fresh, Physical and Mechanical Properties of Alkali-Activated Material
- -
- dispersion medium;
- -
- diffusion interfacial transition zone “powder particles—gel Na2SiO3”;
- -
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López, F.J.; Sugita, S.; Tagaya, M.; Kobayashi, T. Metakaolin-Based Geopolymers for Targeted Adsorbents to Heavy Metal Ion Separation. J. Mater. Sci. Chem. Eng. 2014, 2, 16–27. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Záleská, M.; Pokorný, J.; Lojka, M.; Jankovský, O.; Pavlík, Z. Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar. Materials 2019, 12, 996. [Google Scholar] [CrossRef] [PubMed]
- Tolstoy, A.; Lesovik, V.; Fediuk, R.; Amran, M.; Gunasekaran, M.; Vatin, N.; Vasilev, Y. Production of Greener High-Strength Concrete Using Russian Quartz Sandstone Mine Waste Aggregates. Materials 2020, 13, 5575. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-Friendly Geopolymer Materials: A Review of Performance Improvement, Potential Application and Sustainability Assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Salamanova, M.S.; Murtazaev, S.-A.Y.; Nakhaev, M.R. Possible Alternative Solutions to Problems in the Cement Industry. Stroit. Mater. 2020, 778, 73–77. [Google Scholar] [CrossRef]
- Aliev, S.A.; Murtazayeva, R.S.-A.; Salamanova, M.S. Structure and properties of connecting alkaline activation using cement dust. Her. Dagestan State Tech. Univ. Tech. Sci. 2019, 46, 148–157. [Google Scholar] [CrossRef][Green Version]
- Chen, L.; Wang, Z.; Wang, Y.; Feng, J. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer. Materials 2016, 9, 767. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Abdelgader, H.S.; Murali, G.; Ozbakkaloglu, T.; Lee, Y.H.; Lee, Y.Y. Fiber-Reinforced Alkali-Activated Concrete: A Review. J. Build. Eng. 2022, 45, 103638. [Google Scholar] [CrossRef]
- Assi, L.N.; Deaver, E.; Elbatanouny, M.K.; Ziehl, P. Investigation of Early Compressive Strength of Fly Ash-Based Geopolymer Concrete. Constr. Build. Mater. 2016, 112, 807–815. [Google Scholar] [CrossRef]
- Firdous, R.; Stephan, D.; Djobo, J.N.Y. Natural Pozzolan Based Geopolymers: A Review on Mechanical, Microstructural and Durability Characteristics. Constr. Build. Mater. 2018, 190, 1251–1263. [Google Scholar] [CrossRef]
- Amran, M.; Murali, G.; Fediuk, R.; Vatin, N.; Vasilev, Y.; Abdelgader, H. Palm Oil Fuel Ash-Based Eco-Efficient Concrete: A Critical Review of the Short-Term Properties. Materials 2021, 14, 332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Provis, J.L.; Zou, J.; Reid, A.; Wang, H. Toward an Indexing Approach to Evaluate Fly Ashes for Geopolymer Manufacture. Cem. Concr. Res. 2016, 85, 163–173. [Google Scholar] [CrossRef]
- Sturm, P.; Gluth, G.J.G.; Brouwers, H.J.H.; Kühne, H.-C. Synthesizing One-Part Geopolymers from Rice Husk Ash. Constr. Build. Mater. 2016, 124, 961–966. [Google Scholar] [CrossRef]
- Fediuk, R.; Smoliakov, A.; Stoyushko, N. Increase in Composite Binder Activity. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 156. [Google Scholar]
- Shoaei, P.; Ameri, F.; Reza Musaeei, H.; Ghasemi, T.; Cheah, C.B. Glass Powder as a Partial Precursor in Portland Cement and Alkali-Activated Slag Mortar: A Comprehensive Comparative Study. Constr. Build. Mater. 2020, 251, 118991. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Lesovik, V.S.; Liseitsev, Y.L.; Timokhin, R.A.; Bituyev, A.V.; Zaiakhanov, M.Y.; Mochalov, A.V. Composite Binders for Concretes with Improved Shock Resistance. Mag. Civ. Eng. 2019, 85, 28–38. [Google Scholar] [CrossRef]
- Payá, J.; Agrela, F.; Rosales, J.; Morales, M.M.; Borrachero, M.V. Application of Alkali-Activated Industrial Waste. In New Trends in Eco-efficient and Recycled Concrete; Woodhead Publishing: Thorston, UK, 2019. [Google Scholar]
- Volodchenko, A.A.; Lesovik, V.S.; Volodchenko, A.N.; Glagolev, E.S.; Zagorodnjuk, L.H.; Pukharenko, Y.V. Composite Performance Improvement Based on Non-Conventional Natural and Technogenic Raw Materials. Int. J. Pharm. Technol. 2016. [Google Scholar] [CrossRef]
- Gao, X.X.; Michaud, P.; Joussein, E.; Rossignol, S. Behavior of Metakaolin-Based Potassium Geopolymers in Acidic Solutions. J. Non-Cryst. Solids 2013, 380, 95–102. [Google Scholar] [CrossRef]
- Fediuk, R. Reducing Permeability of Fiber Concrete Using Composite Binders. Spec. Top. Rev. Porous Media Int. J. 2018, 9, 79–89. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Wang, T.; Zheng, Y.; Qiu, L.; Sun, S. Compressive Strength and Anti-Chloride Ion Penetration Assessment of Geopolymer Mortar Merging PVA Fiber and Nano-SiO2 Using RBF–BP Composite Neural Network. Nanotechnol. Rev. 2022, 11, 1181–1192. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, P.; Wu, J.; Jing, Y.; Zhang, D.; Zhang, T. Comprehensive Review of the Properties of Fly Ash-Based Geopolymer with Additive of Nano-SiO2. Nanotechnol. Rev. 2022, 11, 1478–1498. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Guo, J.; Zhang, H.; Wang, T. Effect of Municipal Solid Waste Incineration Ash on Microstructure and Hydration Mechanism of Geopolymer Composites. Buildings 2022, 12, 723. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L. Durability of Alkali-Activated Materials: Progress and Perspectives. J. Am. Ceram. Soc. 2014, 97, 997–1008. [Google Scholar] [CrossRef]
- Semenov, P.; Uzunian, A.; Davidenko, A.; Al, E. First Study of Radiation Hardness of Lead Tungstate Crystals at Low Temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 582, 575–580. [Google Scholar] [CrossRef]
- Kadhim, A.; Sadique, M.; Al-Mufti, R.; Hashim, K. Long-Term Performance of Novel High-Calcium One-Part Alkali-Activated Cement Developed from Thermally Activated Lime Kiln Dust. J. Build. Eng. 2020, 32, 101766. [Google Scholar] [CrossRef]
- Abid, S.R.; Murali, G.; Amran, M.; Vatin, N.; Fediuk, R.; Karelina, M. Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites. Materials 2021, 14, 349. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.; Bahadory, M.; Tovia, F.; Rostami, H. Properties of Alkali-Activated Fly Ash: High Performance to Lightweight. Int. J. Sustain. Eng. 2010, 3, 211–218. [Google Scholar] [CrossRef]
- Vasilyeva, N.; Fedorova, E.; Kolesnikov, A. Big Data as a Tool for Building a Predictive Model of Mill Roll Wear. Symmetry 2021, 13, 859. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A.; Salim, M.U. Past and Present Techniques of Self-Healing in Cementitious Materials: A Critical Review on Efficiency of Implemented Treatments. J. Mater. Res. Technol. 2020, 9, 6883–6899. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A. Formation Mechanism and Applications of Cenospheres: A Review. J. Mater. Sci. 2020, 55, 4539–4557. [Google Scholar] [CrossRef]
- Mohd Ariffin, M.A.; Hussin, M.W.; Rafique Bhutta, M.A. Mix Design and Compressive Strength of Geopolymer Concrete Containing Blended Ash from Agro-Industrial Wastes. Adv. Mater. Res. 2011, 339, 452–457. [Google Scholar] [CrossRef]
- Fediuk, R.; Pak, A.; Kuzmin, D. Fine-Grained Concrete of Composite Binder. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Call, B.M. Guide for the Use of Silica Fume in Concrete; ACI–American Concrete Institute–Committee: Farmington Hills, MI, USA, 2000. [Google Scholar]
- Villa, C.; Pecina, E.T.; Torres, R.; Gómez, L. Geopolymer Synthesis Using Alkaline Activation of Natural Zeolite. Constr. Build. Mater. 2010, 24, 2084–2090. [Google Scholar] [CrossRef]
- Shubbar, A.A.; Sadique, M.; Nasr, M.S.; Al-Khafaji, Z.S.; Hashim, K.S. The Impact of Grinding Time on Properties of Cement Mortar Incorporated High Volume Waste Paper Sludge Ash. Karbala Int. J. Mod. Sci. 2020, 6, 7. [Google Scholar] [CrossRef]
- Kiran Kumar, N.L.N.; Gopala Krishna Sastry, K.V.S. Effects of Nano Silica on the Strengths of Geopolymer Concrete Cured at Ambient Temperature. Int. J. Civ. Eng. Technol. 2017, 8, 437–444. [Google Scholar]
- Jeyaseela, J.; Vishnuram, B.G. Study on Workability and Durability Characteristics of Self-Compacting Geopolymer Concrete Composites. Int. J. Adv. Technol. Eng. Sci. 2015, 3, 1246–1256. [Google Scholar]
- Haddaji, Y.; Majdoubi, H.; Mansouri, S.; Tamraoui, Y.; El bouchti, M.; Manoun, B.; Oumam, M.; Hannache, H. Effect of Synthetic Fibers on the Properties of Geopolymers Based on Non-Heat Treated Phosphate Mine Tailing. Mater. Chem. Phys. 2021, 260, 124147. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Hu, S.; Wang, J.; Wang, T. High-Temperature Behavior of Polyvinyl Alcohol Fiber-Reinforced Metakaolin/Fly Ash-Based Geopolymer Mortar. Compos. Part B Eng. 2022, 244, 110171. [Google Scholar] [CrossRef]
- Zhang, P.; Kang, L.; Zheng, Y.; Zhang, T.; Zhang, B. Influence of SiO2/Na2O Molar Ratio on Mechanical Properties and Durability of Metakaolin-Fly Ash Blend Alkali-Activated Sustainable Mortar Incorporating Manufactured Sand. J. Mater. Res. Technol. 2022, 18, 3553–3563. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Wang, T. Influencing Factors Analysis and Optimized Prediction Model for Rheology and Flowability of Nano-SiO2 and PVA Fiber Reinforced Alkali-Activated Composites. J. Clean. Prod. 2022, 366, 132988. [Google Scholar] [CrossRef]
Marl | CaO | SiO2 | Al2O3 | Fe2O3 | Na2O | MgO | CO2 | Loss on Ignition |
---|---|---|---|---|---|---|---|---|
Initial | 66.61 | 12.29 | 2.23 | 1.16 | 0.38 | 0.25 | 17.08 | - |
Treated | 61.53 | 12.11 | 2.07 | 1.12 | 0.29 | 0.10 | - | 22.78 |
Mix ID | Components, kg per 1 m3 | ||||||
---|---|---|---|---|---|---|---|
Marl | Marl Thermally Treated at 700 °C | Na2SiO3 | H2O | Na2SiF6 | NaOH | Sand | |
M1 | 700 | - | 280 | - | - | 70 | 1040 |
M2 | 700 | - | 280 | - | 16.8 | 70 | 1040 |
TM1 | - | 700 | 280 | - | - | 70 | 1040 |
TM2 | - | 700 | - | 280 | - | 70 | 1040 |
Properties | TM1 | TM2 | M1 | M2 |
---|---|---|---|---|
Normal density of AAM, % | 56.0 | 40.0 | 51.0 | 52.0 |
Setting time | 00–26 | 01–37 | 01–07 | 00–55 |
Start/end, hours-min | 00–32 | 06–29 | 02–29 | 01–43 |
Average density, g/cm3 | 1.90 | 1.80 | 2.00 | 2.01 |
Water absorption, wt.% | 10.2 | 11.4 | 11.9 | 11.7 |
Strength, MPa: | ||||
Flexural | 4.7 | 0.2 | 1.0 | 1.1 |
Compressive | 42.6 | 6.7 | 9.0 | 9.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mintsaev, M.; Murtazaev, S.-A.; Salamanova, M.; Bataev, D.; Saidumov, M.; Murtazaev, I.; Fediuk, R. Structural Formation of Alkali-Activated Materials Based on Thermally Treated Marl and Na2SiO3. Materials 2022, 15, 6576. https://doi.org/10.3390/ma15196576
Mintsaev M, Murtazaev S-A, Salamanova M, Bataev D, Saidumov M, Murtazaev I, Fediuk R. Structural Formation of Alkali-Activated Materials Based on Thermally Treated Marl and Na2SiO3. Materials. 2022; 15(19):6576. https://doi.org/10.3390/ma15196576
Chicago/Turabian StyleMintsaev, Magomed, Sayd-Alvi Murtazaev, Madina Salamanova, Dena Bataev, Magomed Saidumov, Imran Murtazaev, and Roman Fediuk. 2022. "Structural Formation of Alkali-Activated Materials Based on Thermally Treated Marl and Na2SiO3" Materials 15, no. 19: 6576. https://doi.org/10.3390/ma15196576
APA StyleMintsaev, M., Murtazaev, S.-A., Salamanova, M., Bataev, D., Saidumov, M., Murtazaev, I., & Fediuk, R. (2022). Structural Formation of Alkali-Activated Materials Based on Thermally Treated Marl and Na2SiO3. Materials, 15(19), 6576. https://doi.org/10.3390/ma15196576