Synergistic Effect of Cerium Oxide for Improving the Fire-Retardant, Mechanical and Ultraviolet-Blocking Properties of EVA/Magnesium Hydroxide Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Mixing of Magnesium Hydroxide with CeO2
2.3. Processing of the EVA Composites
2.4. Characterizations
3. Results and Discussion
3.1. Samples Preparation and Filler Dispersion
3.1.1. TGA and Particle Size of the Fillers
3.1.2. Morphology Analysis by SEM
3.1.3. X-ray Diffraction (XRD)
3.2. The Thermal Performance of the Composites
3.2.1. DSC Analysis
3.2.2. TGA Analysis of the EVA Composites
3.3. Fire Safety Performance
3.4. Mechanical Properties
3.5. UV Aging Performance
3.5.1. Surface Morphology of the Samples after the UV Irradiation
3.5.2. Tensile Test after the UV Exposure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez-Olivares, G.; Sanchez-Solis, A.; Manero, O.; Pérez-Chávez, R.; Jaramillo, M.; Alongi, J.; Carosio, F. Improving Mechanical Properties and Reaction to Fire of EVA/LLDPE Blends for Cable Applications with Melamine Triazine and Bentonite Clay. Materials 2019, 12, 2393. [Google Scholar] [CrossRef]
- Matta, S.; Bartoli, M.; Arrigo, R.; Frache, A.; Malucelli, G. Flame Retardant Potencial of Tetra-Pak-derived biochar for ethylene-vinyl-acetate copolymers. Compos. Part C Open Access 2022, 8, 100252. [Google Scholar] [CrossRef]
- Yan, K.; Li, G.; Li, Q.; Diab, A.; You, L.; Wang, M. Compound modification of asphalt mixture using ethylene-vinyl acetate copolymer and amorphous poly alpha olefin. Constr. Build. Mater. 2022, 341, 127705. [Google Scholar] [CrossRef]
- Yao, D.; Yin, G.; Bi, Q.; Yin, X.; Wang, N.; Wang, D.-Y. Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties. Polymers 2020, 12, 2107. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Xu, M.; Wang, L. Highly Efficient Composite Flame Retardants for Improving the Flame Retardancy, Thermal Stability, Smoke Suppression, and Mechanical Properties of EVA. Materials 2020, 13, 1251. [Google Scholar] [CrossRef]
- Girardin, B.; Fontaine, G.; Duquesne, S.; Försth, M.; Bourbigot, S. Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling. Materials 2015, 8, 7837–7863. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, S.; Wang, A.; Cheng, P.; Li, J.; Shen, L.; Liu, H. Remarkable effects of silicone rubber on flame retardant property of high-density polyethylene/magnesium hydroxide composites. Polym. Degrad. Stab. 2022, 203, 110061. [Google Scholar] [CrossRef]
- Echeverry-Rendón, M.; Stančič, B.; Muizer, K.; Duque, V.; Calderon, D.J.; Echeverria, F.; Harmsen, M.C. Cytotoxicity Assessment of Surface-Modified Magnesium Hydroxide Nanoparticles. ACS Omega 2022, 7, 17528–17537. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Jiang, J.; Zhang, Y.; Huang, J.; Liu, H. Synergism effect of CeO2 on the flame retardant performance of intumescent flame retardant polypropylene composites and its mechanism. J. Anal. Appl. Pyrolysis 2016, 122, 405–414. [Google Scholar] [CrossRef]
- Mohanapriya, M.K.; Deshmukh, K.; Ahamed, M.B.; Chidambaram, K.; Pasha, S.K.K. Influence of Cerium Oxide (CeO2) Nanoparticles on the Structural, Morphological, Mechanical and Dielectric Properties of PVA/PPy Blend Nanocomposites. Mater. Today Proc. 2016, 3, 1864–1873. [Google Scholar] [CrossRef]
- Shang, Z.; Lü, C.; Lü, X.; Gao, L. Studies on syntheses and properties of novel CeO2/polyimide nanocomposite films from Ce(Phen)3 complex. Polymer 2007, 48, 4041–4046. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, B.; Jiang, S.; Bai, H.; Zhang, S. Use of CeO2 Nanoparticles to Enhance UV-Shielding of Transparent Regenerated Cellulose Films. Polymers 2019, 11, 458. [Google Scholar] [CrossRef]
- Qingna, Z.; Yuhong, D.; Peng, W.; Xiujian, Z. CeO2-TiO2/NO2 Anti-Reflecting and UV-Shielding Double-Functional Films Coated on Glass Substrates Using Sol-Gel Method. J. Rare Earths 2007, 25, 64–67. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, H.; Ma, W.; Liang, J.; Shen, Q.; Zhu, Q.; Yang, X. Synthesis of CeO2-loaded titania nanotubes and its effect on the flame retardant property of epoxy resin. Polym. Adv. Technol. 2019, 30, 2136–2142. [Google Scholar] [CrossRef]
- Jiao, C.-M.; Chen, X.-L. Synergistic Flame Retardant Effect of Cerium Oxide in Ethylene-Vinyl Acetate/Aluminum Hydroxide Blends. J. Appl. Polym. Sci. 2010, 116, 1889–1893. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, X.; Li, Y. Synthesis of novel unsaturated polyester/g-C3N4-CeO2 composites with enhanced fire safety properties. Polym. Compos. 2020, 41, 879–885. [Google Scholar] [CrossRef]
- Xue, J.; Wang, J.; Han, Y.; Li, P.; Sun, B. Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite. J. Alloys Compd. 2011, 509, 1573–1578. [Google Scholar] [CrossRef]
- Patil, A.S.; Patil, A.V.; Dighavkar, C.G.; Adole, V.A.; Tupe, U.J. Synthesis techniques and applications of rare earth metal oxides semiconductors: A review. Chem. Phys. Lett. 2022, 796, 139555. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, Y.; Liu, S.; Chi, Z.; Xu, J. Synergistic effect of La2O3 on the flame retardant properties and the degradation mechanism of a novel PP/IFR system. Polym. Degrad. Stab. 2012, 97, 707–714. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhang, Z.; Wang, C.; Shi, S.; Chen, X. Mechanical properties of cerium oxide-modified vulcanised natural rubber at elevated temperature. Plast. Rubber Compos. 2017, 46, 306–313. [Google Scholar] [CrossRef]
- Attia, N.F. Organic nanoparticles as promising flame retardant materials for thermoplastic polymers. J. Therm. Anal. Calorim. 2017, 127, 2273–2282. [Google Scholar] [CrossRef]
- Attia, N.F.; Mousa, M. Synthesis of smart coating for furniture textile and their flammability and hydrophobic properties. Prog. Org. Coat. 2017, 110, 204–209. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Wang, H. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 032028. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Klapiszewski, L.; Jesionowski, T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review. Powder Technol. 2017, 319, 373–407. [Google Scholar] [CrossRef]
- Shen, L.; Shao, C.; Li, R.; Xu, Y.; Li, J.; Lin, H. Preparation and characterization of ethylene–vinyl acetate copolymer (EVA)–magnesium hydroxide (MH)–hexaphenoxycyclotriphosphazene (HPCTP) composite flame-retardant materials. Polym. Bull. 2019, 76, 2399–2410. [Google Scholar] [CrossRef]
- Lu, L.; Dai, G.; Yan, L.; Wang, L.; Wang, L.; Wang, Z.; Wei, K. In-situ low-temperature sol-gel growth of nano-cerium oxide ternary composite films for ultraviolet blocking. Opt. Mater. 2020, 101, 109724. [Google Scholar] [CrossRef]
- Fudala, A.S.; Salih, W.M.; Alkazaz, F.F. Synthesis different sizes of cerium oxide CeO2 nanoparticles by using different concentrations of precursor via sol–gel method. Mater. Today Proc. 2022, 49, 2786–2792. [Google Scholar] [CrossRef]
- Nöchel, U.; Kumar, U.N.; Wang, K.; Kratz, K.; Behl, M.; Lendlein, A. Triple-shape effect with adjustable switching temperatures in crosslinked poly[ethylene-co-(vinyl acetate). Macromol. Chem. Phys. 2014, 215, 2446–2456. [Google Scholar] [CrossRef]
- Ye, L.; Miao, Y.; Yan, H.; Li, Z.; Zhou, Y.; Liu, J.; Liu, H. The synergistic effects of boroxo siloxanes with magnesium hydroxide in halogen-free flame retardant EVA/MH blends. Polym. Degrad. Stab. 2013, 98, 868–874. [Google Scholar] [CrossRef]
- Witkowski, A.; Stec, A.A.; Hull, T.R. The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA. Polym. Degrad. Stab. 2012, 97, 2231–2240. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, C.; Xu, S. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly(vinyl chloride) composites: The effect of filler shape. Compos. Part A Appl. Sci. Manuf. 2018, 113, 1–11. [Google Scholar] [CrossRef]
- Duan, H.; Chen, Y.; Ji, S.; Hu, R.; Ma, H. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties. Chem. Eng. J. 2019, 375, 121916. [Google Scholar] [CrossRef]
- El Hage, R.; Viretto, A.; Sonnier, R.; Ferry, L.; Lopez-Cuesta, J.M. Flame retardancy of ethylene vinyl acetate (EVA) using new aluminum-based fillers. Polym. Degrad. Stab. 2014, 108, 56–67. [Google Scholar] [CrossRef]
- Ngohang, F.E.; Fontaine, G.; Gay, L.; Bourbigot, S. Smoke composition using MLC/FTIR/ELPI: Application to flame retarded ethylene vinyl acetate. Polym. Degrad. Stab. 2015, 115, 89–109. [Google Scholar] [CrossRef]
- Li, Z.; Qu, B. Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polym. Degrad. Stab. 2003, 81, 401–408. [Google Scholar] [CrossRef]
- Cárdenas, M.A.; García-López, D.; Gobernado-Mitre, I.; Merino, J.C.; Pastor, J.M.; Martínez, J.d.D.; Barbeta, J.; Calveras, D. Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites—Effect of particle size and surface treatment of ATH filler. Polym. Degrad. Stab. 2008, 93, 2032–2037. [Google Scholar] [CrossRef]
- Lv, J.-p.; Liu, W.-h. Flame Retardancy and Mechanical properties of EVA Nanocomposites Based on Magnesium Hydroxide Nanoparticles/Microcapsulated Red Phosphorus. J. Appl. Polym. Sci. 2007, 105, 333–340. [Google Scholar] [CrossRef]
- George, G.; Manikandan, H.; Kumar, T.M.A.; Joshy, S.; Sanju, A.C.; Anandhan, S. Effect of nanofillers on the crystalline and mechanical properties of EVACO polymer nanocomposites. Mater. Today Proc. 2021, 47, 5024–5028. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Li, Z.; Yang, Y.-X.; Zhang, Y.-L.; Wen, X.; Li, N.; Fu, C.; Jian, R.-K.; Li, L.-J.; Wang, D.-Y. A Geometry Effect of Carbon Nanomaterials on Flame Retardancy and Mechanical Properties of Ethylene-Vinyl Acetate/Magnesium Hydroxide Composites. Polymers 2018, 10, 1028. [Google Scholar] [CrossRef]
- Jin, J.; Chen, S.; Zhang, J. UV aging behaviour of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents. Polym. Degrad. Stab. 2010, 95, 725–732. [Google Scholar] [CrossRef]
Sample Name | EVA | MDH | CeO2 |
---|---|---|---|
EVA | 100 | - | - |
EM | 45 | 55 | - |
EMC3 | 45 | 52 | 3 |
EMC5 | 45 | 50 | 5 |
Samples | T-5% (°C) | T-Max (°C) | Der. Weight (%/°C) | Residue @ 700 °C (%) |
---|---|---|---|---|
CeO2 | - | - | - | - |
MDH | 312.4 | 353.1 | 0.5 | 68.4 |
MDH + CeO2 3% | 317.5 | 365.8 | 0.4 | 69.5 |
MDH + CeO2 5% | 324.3 | 367.6 | 0.4 | 71.9 |
Sample Formulation | D50 (μm) |
---|---|
MDH | 0.98 |
CeO2 | 0.82 |
MDH + CeO2 3% | 0.96 |
MDH + CeO2 5% | 0.94 |
Samples | Tg (°C) | Tm (°C) | Melting Enthalpy (J·g−1) |
---|---|---|---|
EVA | −28.2 | 75.1 | 23.2 |
EM | −29.5 | 76.8 | 13.9 |
EMC3 | −28.9 | 75.7 | 11.2 |
EMC5 | −27.5 | 77.1 | 11.1 |
Samples | T-5% (°C) | T-Max (°C) | Der. Weight (%/°C) | Residue @ 700 °C (in wt.%) |
---|---|---|---|---|
EVA | 325.8 | 460.4 | 2.1 | 0.5 |
EM | 327.4 | 460.5 | 1.2 | 32.5 |
EMC3 | 324.4 | 457.8 | 0.9 | 39.8 |
EMC5 | 319.1 | 458.4 | 0.9 | 39.2 |
Samples | LOI | UL-94 | |||
---|---|---|---|---|---|
(%) | t1 (s) | t2 (s) | Dripping | Ignition | |
EVA | 18.2 | >10 | - | Yes | Yes |
EM | 40.9 | 1 | 5 | No | No |
EMC3 | 38.5 | 2 | 6 | No | No |
EMC5 | 39.9 | 2 | 4 | No | No |
Sample Name | TTI (s) | pHRR (kW/m2) | pHRR (Red. %) | THR (MJ/m2) | AEHC (MJ/kg) | TSP (m2) | Char Residue (wt.%) |
---|---|---|---|---|---|---|---|
EVA | 48 ± 8 | 1195 ± 18 | - | 152 ± 2 | 35.9 ± 0.1 | 13.9 ± 3.0 | 0.6 ± 0.3 |
EM | 73 ± 6 | 491 ± 13 | 58.9 | 111 ± 1 | 28.6 ± 0.2 | 8.6 ± 0.6 | 36.7 ± 0.6 |
EMC3 | 75 ± 4 | 425 ± 7 | 64.4 | 108 ± 1 | 26.3 ± 0.1 | 8.7 ± 0.5 | 39.5 ± 0.7 |
EMC5 | 77 ± 1 | 354 ± 6 | 70.4 | 88 ± 9 | 21.8 ± 0.2 | 7.9 ± 0.4 | 41.2 ± 0.4 |
Samples | Elongation at Break (%) | Tensile Strength (MPa) | Young’s Modulus (MPa) |
---|---|---|---|
EVA | 722 ± 21 | 18.6 ± 0.4 | 17 ± 1 |
EM | 167 ± 10 | 9.6 ± 0.5 | 69 ± 2 |
EMC3 | 203 ± 13 | 10.1 ± 0.6 | 76 ± 3 |
EMC5 | 254 ± 23 | 9.1 ± 0.2 | 73 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobson, J.; Yin, G.-Z.; Yu, X.; Zhou, X.; Prolongo, S.G.; Ao, X.; Wang, D.-Y. Synergistic Effect of Cerium Oxide for Improving the Fire-Retardant, Mechanical and Ultraviolet-Blocking Properties of EVA/Magnesium Hydroxide Composites. Materials 2022, 15, 5867. https://doi.org/10.3390/ma15175867
Hobson J, Yin G-Z, Yu X, Zhou X, Prolongo SG, Ao X, Wang D-Y. Synergistic Effect of Cerium Oxide for Improving the Fire-Retardant, Mechanical and Ultraviolet-Blocking Properties of EVA/Magnesium Hydroxide Composites. Materials. 2022; 15(17):5867. https://doi.org/10.3390/ma15175867
Chicago/Turabian StyleHobson, Jose, Guang-Zhong Yin, Xiaoli Yu, Xiaodong Zhou, Silvia Gonzalez Prolongo, Xiang Ao, and De-Yi Wang. 2022. "Synergistic Effect of Cerium Oxide for Improving the Fire-Retardant, Mechanical and Ultraviolet-Blocking Properties of EVA/Magnesium Hydroxide Composites" Materials 15, no. 17: 5867. https://doi.org/10.3390/ma15175867
APA StyleHobson, J., Yin, G.-Z., Yu, X., Zhou, X., Prolongo, S. G., Ao, X., & Wang, D.-Y. (2022). Synergistic Effect of Cerium Oxide for Improving the Fire-Retardant, Mechanical and Ultraviolet-Blocking Properties of EVA/Magnesium Hydroxide Composites. Materials, 15(17), 5867. https://doi.org/10.3390/ma15175867