Chemical Structure and Microstructure Characterization of Ladder-Like Silsesquioxanes Derived Porous Silicon Oxycarbide Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guzman, I.Y. Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review). Glass Ceram. 2003, 60, 280–283. [Google Scholar] [CrossRef]
- Han, L.; Li, F.; Deng, X.; Wang, J.; Zhang, H.; Zhang, S. Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures. J. Eur. Ceram. Soc. 2017, 37, 2717–2725. [Google Scholar] [CrossRef]
- Salvini, V.R.; Luchini, B.; Aneziris, C.G.; Pandolfelli, V.C. Innovation in ceramic foam filters manufacturing process. Int. J. Appl. Ceram. Technol. 2019, 16, 378–388. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Y.; Su, X.; Cao, S.; Liu, Y.; Gao, D.; An, L. Experimental study of water recovery from flue gas using hollow micro–nano porous ceramic composite membranes. J. Ind. Eng. Chem. 2018, 57, 349–355. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, H.; Hu, Y.; Yan, S.; Yang, J. Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. J. Environ. Manag. 2019, 234, 245–252. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Ren, X.; Liu, K.; Yang, J. Fine platinum nanoparticles supported on a porous ceramic membrane as efficient catalysts for the removal of benzene. Sci. Rep. 2017, 7, 16589. [Google Scholar] [CrossRef] [PubMed]
- Motisuke, M.; Carrodeguas, R.G.; Zavaglia, C.A.d.C. Si-tricalcium phosphate cement: Preparation, characterization and bioactivity in SBF. Mater. Res. 2011, 14, 493–498. [Google Scholar] [CrossRef]
- Dudina, D.; Bokhonov, B.; Olevsky, E. Fabrication of Porous Materials by Spark Plasma Sintering: A Review. Materials 2019, 12, 541. [Google Scholar] [CrossRef] [PubMed]
- Hwa, L.C.; Rajoo, S.; Noor, A.M.; Ahmad, N.; Uday, M.B. Recent advances in 3D printing of porous ceramics: A review. Curr. Opin. Solid State Mater. Sci. 2017, 21, 323–347. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, H.; Yang, S.; Guo, Y.; Li, N.; Zhou, H.; Cao, Y. Frozen slurry-based laminated object manufacturing to fabricate porous ceramic with oriented lamellar structure. J. Eur. Ceram. Soc. 2018, 38, 4014–4019. [Google Scholar] [CrossRef]
- Ainger, F.W.; Herbert, J.M. The Preparation of Phosphorus-Nitrogen Compounds as Non-Porous Solids. In Special Ceramics; Popper, P., Ed.; Academic Press: New York, NY, USA, 1960; pp. 168–182. [Google Scholar]
- Chantrell, P.G.; Popper, P. Inorganic Polymers and Ceramics. In Special Ceramics; Popper, P., Ed.; Academic Press: New York, NY, USA, 1965; pp. 87–103. [Google Scholar]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Sorarù, G.D.; Modena, S.; Guadagnino, E.; Colombo, P.; Egan, J.; Pantano, C. Chemical Durability of Silicon Oxycarbide Glasses. J. Am. Ceram. Soc. 2002, 85, 1529–1536. [Google Scholar] [CrossRef]
- Riedel, R.; Kienzle, A.; Dressler, W.; Ruwisch, L.; Bill, J.; Aldinger, F. A Silicoboron Carbonitride Ceramic Stable to 2000 °C. Nature 1996, 382, 796–798. [Google Scholar] [CrossRef]
- Erb, D.; Lu, K. Additive and pyrolysis atmosphere effects on polysiloxane-derived porous SiOC ceramics. J. Eur. Ceram. Soc. 2017, 37, 4547–4557. [Google Scholar] [CrossRef]
- Sorarù, G.D. Silicon oxycarbide glasses from gels. J. Sol. Gel Sci. Technol. 1994, 2, 843–848. [Google Scholar] [CrossRef]
- Pantano, C.G.; Singh, A.K.; Zhang, H. Silicon oxycarbide glasses. J. Sol. Gel Sci. Technol. 1999, 14, 7–25. [Google Scholar] [CrossRef]
- Stabler, C.; Ionescu, E.; Graczyk-Zając, M.; Gonzalo-Juan, I.; Riedel, R. Siliconoxycarbide glasses and glass-ceramics: “All-Rounder” materials for advanced structural and functional applications. J. Am. Ceram. Soc. 2018, 101, 4817–4856. [Google Scholar] [CrossRef]
- Jeleń, P.; Bik, M.; Nocuń, M.; Gawęda, M.; Długoń, E.; Sitarz, M. Free carbon phase in SiOC glasses derived from ladder-like silsesquioxanes. J. Mol. Struct. 2016, 1126, 172–176. [Google Scholar] [CrossRef]
- Blum, Y.D.; MacQueen, D.B.; Kleebe, H.J. Synthesis and characterization of carbon-enriched silicon oxycarbides. J. Eur. Ceram. Soc. 2005, 25, 143–149. [Google Scholar] [CrossRef]
- Kleebe, H.J.; Blum, Y.D. SiCO ceramic with high excess free carbon. J. Eur. Ceram. Soc. 2008, 28, 1037–1042. [Google Scholar] [CrossRef]
- Bik, M.; Stygar, M.; Jeleń, P.; Dąbrowa, J.; Leśniak, M.; Brylewski, T.; Sitarz, M. Protective-conducting coatings based on black glasses (SiOC) for application in Solid Oxide Fuel Cells. Int. J. Hydrog. Energy. 2017, 42, 27298–27307. [Google Scholar] [CrossRef]
- Bik, M.; Gil, A.; Stygar, M.; Dąbrowa, J.; Jeleń, P.; Długoń, E.; Leśniak, M.; Sitarz, M. Studies on the corrosion resistance of SiOC glasses/TiAl alloy system. Intermetallics 2019, 105, 29–38. [Google Scholar] [CrossRef]
- Gawęda, M.; Jeleń, P.; Długoń, E.; Wajda, A.; Leśniak, M.; Simka, W.; Sowa, M.; Detsch, R.; Boccaccini, A.R.; Sitarz, M. Bioactive layers based on black glasses on titanium substrates. J. Am. Ceram. Soc. 2018, 101, 590–601. [Google Scholar] [CrossRef]
- Arango-Ospina, M.; Xie, F.; Gonzalo-Juan, I.; Riedel, R.; Ionescu, E.; Boccaccini, A.R. Review: Silicon oxycarbide based materials for biomedical applications. Appl. Mater. Today. 2019, 100482. [Google Scholar] [CrossRef]
- Harshe, R.; Balan, C.; Riedel, R. Amorphous Si(Al)OC ceramic from polysiloxanes: Bulk ceramic processing, crystallization behavior and applications. J. Eur. Ceram. Soc. 2004, 24, 3471–3482. [Google Scholar] [CrossRef]
- Graczyk-Zając, M.; Vrankovic, D.; Waleska, P.; Hess, C.; Sasikumar, P.V.; Lauterbach, S.; Kleebe, H.J.; Sorarù, G.D. The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds. J. Mater. Chem. A 2018, 6, 93–103. [Google Scholar] [CrossRef]
- Pan, J.; Shen, W.; Zhao, Y.; Sun, H.; Guo, T.; Cheng, Y.; Zhao, N.; Tang, H.; Yan, X. Difunctional hierarchical porous SiOC composites from silicone resin and rice husk for efficient adsorption and as a catalyst support. Colloids Surf. A Physicochem. Eng. Asp. 2019, 124041. [Google Scholar] [CrossRef]
- Pan, J.; Ren, J.; Xie, Y.; Xie, Y.; Wei, X.; Guan, Y.; Yan, X.; Tang, H.; Cheng, X. Porous SiOC composites fabricated from preceramic polymers and wood powders for efficient dye adsorption and removal. Res. Chem. Intermed. 2017, 43, 3813–3832. [Google Scholar] [CrossRef]
- Liao, N.; Zheng, B.; Zhang, M.; Xue, W. Numerical approach to evaluate performance of porous SiC5/4O3/2 as potential high temperature hydrogen gas sensor. Int. J. Hydrog. Energy. 2019, 44, 26679–26684. [Google Scholar] [CrossRef]
- Tamayo, A.; Mazo, M.A.; Ruiz-Caro, R.; Martín-Illana, A.; Bedoya, L.M.; Veiga-Ochoa, M.D.; Rubio, J. Mesoporous silicon oxycarbide materials for controlled drug delivery systems. Chem. Eng. J. 2015, 280, 165–174. [Google Scholar] [CrossRef]
- Busca, G. Structural, Surface, and Catalytic Properties of Aluminas. Adv. Catal. 2014, 57, 319–404. [Google Scholar] [CrossRef]
- Trueba, M.; Trasatti, S.P. γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. Eur. J. Inorg. Chem. 2005, 17, 3393–3403. [Google Scholar] [CrossRef]
- Sitarz, M.; Czosnek, C.; Jeleń, P.; Odziomek, M.; Olejniczak, Z.; Kozanecki, M.; Janik, J.F. SiOC glasses produced from silsesquioxanes by the aerosol-assisted vapor synthesis method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 112, 440–445. [Google Scholar] [CrossRef]
- Yu, S.; Tu, R.; Goto, T. Preparation of SiOC nanocomposite films by laser chemical vapor deposition. J. Eur. Ceram. Soc. 2016, 36, 403–409. [Google Scholar] [CrossRef]
- Zare, A.; Su, Q.; Gigax, J.; Shojaee, S.A.; Harriman, T.A.; Nastasi, M.; Shao, L.; Materer, N.F.; Lucca, D.A. Effects of ion irradiation on chemical and mechanical properties of magnetron sputtered amorphous SiOC. Nucl. Instrum. Methods Phys. Res. B. 2019, 446, 10–14. [Google Scholar] [CrossRef]
- Mazo, M.A.; Palencia, C.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J.L. Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering. J. Eur. Ceram. Soc. 2012, 32, 3369–3378. [Google Scholar] [CrossRef]
- Walter, S.; Soraru, G.D.; Bréquel, H.; Enzo, S. Microstructural and mechanical characterization of sol gel-derived Si–O–C glasses. J. Eur. Ceram. Soc. 2002, 22, 2389–2400. [Google Scholar] [CrossRef]
- Sitarz, M.; Jastrzębski, W.; Jeleń, P.; Długoń, E.; Gawęda, M. Preparation and structural studies of black glasses based on ladder-like silsesquioxanes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 132, 884–888. [Google Scholar] [CrossRef]
- Gawęda, M.; Długoń, E.; Leśniak, M.; Kurpaska, Ł.; Simka, W.; Sowa, M.; Sitarz, M. The influence of the pyrolysis process on mechanical parameters and tightness of the black glasses layers on titanium substrates. Ceram. Int. 2017, 43, 11345–11353. [Google Scholar] [CrossRef]
- Yan, X.; Sahimi, M.; Tsotsis, T.T. Fabrication of high-surface area nanoporous SiOC ceramics using pre-ceramic polymer precursors and a sacrificial template: Precursor effects. Microporous Mesoporous Mater. 2017, 241, 338–345. [Google Scholar] [CrossRef]
- Tamayo, A.; Rubio, J.; Rubio, F.; Oteo, J.L.; Riedel, R. Texture and micronanostructure of porous silicon oxycarbide glasses prepared from hybrid materials aged in different solvents. J. Eur. Ceram. Soc. 2011, 31, 1791–1801. [Google Scholar] [CrossRef]
- Tamayo, A.; Rubio, F.; Rubio, J.; Oteo, J.L. Surface and structural modification of nanostructured mesoporous silicon oxycarbide glasses obtained from preceramic hybrids aged in NH4OH. J. Am. Ceram. Soc. 2013, 96, 323–330. [Google Scholar] [CrossRef]
- Handke, M.; Sitarz, M.; Długoń, E. Amorphous SiCxOy coatings from ladder-like polysilsesquioxanes. J. Mol. Struct. 2011, 993, 193–197. [Google Scholar] [CrossRef]
- OPUS, version 7.2; FT-IR Spectroscopy Software; Bruker: Billerica, MA, USA.
- Baney, R.H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Silsesquioxanes. Chem. Rev. 1995, 95, 1409–1430. [Google Scholar] [CrossRef]
- Jeleń, P.; Szumera, M.; Gawęda, M.; Długoń, E.; Sitarz, M. Thermal evolution of ladder-like silsesquioxanes during formation of black glasses. J. Therm. Anal. Calorim. 2017, 130, 103–111. [Google Scholar] [CrossRef]
- Segatelli, M.G.; Nunes Pires, A.T.; Yoshida, I.V.P. Synthesis and structural characterization of carbon-rich SiCxOy derived from a Ni-containing hybrid polymer. J. Eur. Ceram. Soc. 2008, 28, 2247–2257. [Google Scholar] [CrossRef]
- Handke, M.; Handke, B.; Kowalewska, A.; Jastrzębski, W. New polysilsesquioxane materials of ladder-like structure. J. Mol. Struct. 2009, 924–926, 254–263. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, D.; Zhang, R. The synthesis and X-ray diffraction study of the ladder-like polysilsesquioxanes with side-chain ester groups. Polym. Adv. Technol. 1997, 8, 662–665. [Google Scholar] [CrossRef]
- Soraru, G.D.; Karakuscu, A.; Boissiere, C.; Babonneau, F. On the shrinkage during pyrolysis of thin films and bulk components: The case of a hybrid silica gel precursor for SiOC glasses. J. Eur. Ceram. Soc. 2012, 32, 627–632. [Google Scholar] [CrossRef]
- Olejniczak, Z.; Łęczka, M.; Cholewa-Kowalska, K.; Wojtach, K.; Rokita, M.; Mozgawa, W. 29Si MAS NMR and FTIR study of inorganic–organic hybrid gels. J. Mol. Struct. 2005, 744–747, 465–471. [Google Scholar] [CrossRef]
- Zhang, H.; Pantano, C.G. Synthesis and Characterization of Silicon Oxycarbide Glasses. J. Am. Ceram. Soc. 1990, 73, 958–963. [Google Scholar] [CrossRef]
- Reschke, V.; Bordia, R.K.; Scheffler, F.; Scheffler, M. Rheology and crosslinking of a low-viscosity SiOC preceramic polymer. Ceram. Int. 2016, 42, 7620–7625. [Google Scholar] [CrossRef]
- Trimmel, G.; Badheka, R.; Babonneau, F.; Latournerie, J.; Dempsey, P.; Bahloul-Houlier, D.; Parmentier, J.; Soraru, G.D. Solid State NMR and TG/MS Study on the Transformation of Methyl Groups During Pyrolysis of Preceramic Precursors to SiOC Glasses. J. Sol. Gel Sci. Technol. 2003, 26, 279–283. [Google Scholar] [CrossRef]
- Pauletti, A.; Moskowitz, G.; Millan, T.; Fernández-Martín, C.; Boissière, C.; Gervais, C.; Babonneau, F. Aerosol-generated mesoporous silicon oxycarbide particles. Pure Appl. Chem. 2009, 81, 1449–1457. [Google Scholar] [CrossRef]
- Gualandris, V.; Babonneau, F.; Janicke, M.T.; Chmelka, B.F. NMR Studies on Hydrolysis and Condensation Reactions of Alkoxysilanes Containing Si—H Bonds. J. Sol. Gel Sci. Technol. 1998, 13, 75–80. [Google Scholar] [CrossRef]
- Bréquel, H.; Parmentier, J.; Walter, S.; Badheka, R.; Trimmel, G.; Masse, S.; Latournerie, J.; Dempsey, P.; Turquat, C.; Desmartin-Chomel, A.; et al. Systematic Structural Characterization of the High-Temperature Behavior of Nearly Stoichiometric Silicon Oxycarbide Glasses. Chem. Mater. 2004, 16, 2585–2598. [Google Scholar] [CrossRef]
- Widgeon, S.J.; Sen, S.; Mera, G.; Ionescu, E.; Riedel, R.; Navrotsky, A. 29Si and 13C Solid-State NMR Spectroscopic Study of Nanometer-Scale Structure and Mass Fractal Characteristics of Amorphous Polymer Derived Silicon Oxycarbide Ceramics. Chem. Mater. 2010, 22, 6221–6228. [Google Scholar] [CrossRef]
Band Position (cm−1) and Characteristics | Type of the Vibration | ||
S1 | S2 | S3 | |
- | 3446 br, m | 3438 br, m | νas and νs O-H in H2O |
2969 m | 2975 m | 2973 m | νas of C-H in Si-CH3 |
2911 w | 2914 w | 2928 w | νs of C-H in Si-CH3 |
- | 1627 w | 1627 w | δs H-O-H in H2O |
1412 w | 1413 w | 1411 w | νas of C-H in Si-CH3 |
1271 s | 1273 s | 1272 s | νs of C-H in Si-CH3 |
- | 1123 s | 1123 s | νas of Si-O-Si rings |
1090 s | - | - | νas of Si-O-Si rings |
1030 vs | 1028 vs | 1032 vs | νas of Si-O-Si bridges |
857 m | 856 m | 854 m | δ of C-H in Si-CH3 |
800 s | 798 s | - | νas of Si-C in Si-CH3 |
- | 782 s | 782 s | νas of Si-C in Si-CH3 |
702 w | 702 w | 701 w | νs of Si-C in Si-CH3 |
573 w | 572 w | 572 w | νs of Si-O-Si rings |
439 m | 443 m | 443 m | δ of O-Si-O |
Band Position (cm−1) and Characteristics | Type of the Vibration | ||
S4 | S5 | S6 | |
3436 br, m | 3433 br, m | 3433 br, m | νas and νs O-H in H2O |
2927 | 2925 | 2923 | νas of C-H in Si-CH3 |
2857 w | 2854 w | 2853 w | νs of C-H in Si-CH3 |
2257 w | 2258 w | 2590 w | ν Si-H in O-Si-H |
1705 w | 1709 w | 1708 w | ν C=O in oxidized carbon phase |
1630 w | 1631 w | 1628 w | δs H-O-H in H2O |
1361 w | 1361 w | 1361 w | νas of C-H in Si-CH3 |
1276 w | 1276 w | 1276 w | νs of C-H in Si-CH3 |
1066 vs | 1064 vs | 1058 vs | νas of Si-O-Si bridges |
876 w | 876 w | 875 w | δ Si-H in O-Si-H, ν Si-C |
807 m | 805 m | 806 m | νs of Si-O-Si |
453 m | 454 m | 449 m | δ of O-Si-O |
Structural Unit Type | Chemical Shift (ppm) | % Share |
Q4 [SiO4] | −108.8 | 4.5 |
Q3 [SiO3OH] | −100.7 | 12.4 |
T [SiO3C] | −64.1 | 48.7 |
D [SiO2C2] | −36.0 | 5.4 |
DH [HSiO3] | −24.3 | 16.8 |
X [SiC4] | −11.1 | 9.3 |
M [SiOC3] | 3.0 | 2.9 |
Parameter | Sample | ||
S4 | S5 | S6 | |
Single Point Surface Area (m2/g) | 175.64 | 257.16 | 277.20 |
BET Surface Area (m2/g) | 167.41 | 248.31 | 268.49 |
Langmuir Surface Area (m2/g) | 222.23 | 327.47 | 354.73 |
t-Plot External Surface Area (m2/g) | 10.05 | 24.39 | 31.83 |
t-Plot Micropore Area (m2/g) | 157.36 | 223.92 | 236.67 |
t-Plot Micropore Volume (cm3/g) | 0.0739 | 0.1040 | 0.1099 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchewka, J.; Jeleń, P.; Rutkowska, I.; Bezkosty, P.; Sitarz, M. Chemical Structure and Microstructure Characterization of Ladder-Like Silsesquioxanes Derived Porous Silicon Oxycarbide Materials. Materials 2021, 14, 1340. https://doi.org/10.3390/ma14061340
Marchewka J, Jeleń P, Rutkowska I, Bezkosty P, Sitarz M. Chemical Structure and Microstructure Characterization of Ladder-Like Silsesquioxanes Derived Porous Silicon Oxycarbide Materials. Materials. 2021; 14(6):1340. https://doi.org/10.3390/ma14061340
Chicago/Turabian StyleMarchewka, Jakub, Piotr Jeleń, Izabela Rutkowska, Patryk Bezkosty, and Maciej Sitarz. 2021. "Chemical Structure and Microstructure Characterization of Ladder-Like Silsesquioxanes Derived Porous Silicon Oxycarbide Materials" Materials 14, no. 6: 1340. https://doi.org/10.3390/ma14061340
APA StyleMarchewka, J., Jeleń, P., Rutkowska, I., Bezkosty, P., & Sitarz, M. (2021). Chemical Structure and Microstructure Characterization of Ladder-Like Silsesquioxanes Derived Porous Silicon Oxycarbide Materials. Materials, 14(6), 1340. https://doi.org/10.3390/ma14061340