The Effect of Touch-Cure Polymerization on the Conversion and Hardness of Core Build-Up Resin Composites: A Laboratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Hardness Measurements
2.3. Degree of Conversion Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polydorou, O.; Hammad, M.; König, A.; Hellwig, E.; Kümmerer, K. Release of monomers from different core build-up materials. Dent. Mater. 2009, 25, 1090–1095. [Google Scholar] [CrossRef]
- Arrais, C.A.G.; Rueggeberg, F.A.; Waller, J.L.; de Goes, M.F.; Giannini, M. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials. Braz. Oral. Res. 2010, 24, 245–249. [Google Scholar] [CrossRef]
- Tauböck, T.T.; Oberlin, H.; Buchalla, W.; Roos, M.; Attin, T. Comparing the effectiveness of self-curing and light curing in polymerization of dual-cured core buildup materials. J. Am. Dent. Assoc. 2011, 142, 950–956. [Google Scholar] [CrossRef]
- Kournetas, N.; Tzoutzas, I.; Eliades, G. Monomer conversion in dual-cured core buildup materials. Oper. Dent. 2011, 36, 92–97. [Google Scholar] [CrossRef]
- Ding, H.; Meng, X.; Luo, X. Hardness gradients of dual-polymerized flowable composite resins in simulated root canals. J. Prosthet. Dent. 2014, 112, 1231–1237. [Google Scholar] [CrossRef]
- Karakis, D.; Yildirim-Bicer, A.Z.; Dogan, A.; Koralay, H.; Cavdar, S. Effect of self and dual-curing on degree of conversion and crosslink density of dual-cure core build-up materials. J. Prosthodont. Res. 2017, 61, 210–216. [Google Scholar] [CrossRef]
- Spinhayera, L.; Buia, A.T.B.; Leprince, J.G.; Hardya, C.M.F. Core build-up resin composites: An in-vitro comparative study. Biomater. Investig. Dent. 2020, 7, 159–166. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Petropoulou, A.; Anagnostou, M.; Zafiropoulou, M.; Zinelis, S.; Eliades, G. Effect of curing mode on the conversion and IIT-derived mechanical properties of core build-up resin composites. J. Mech. Behav. Biomed. Mater. 2021, 123, 104757. [Google Scholar] [CrossRef]
- Kadowaki, Y.; Kakuda, S.; Kawano, S.; Katsumata, A.; Ting, S.; Shuhei Hoshika, S.; Ikeda, T.; Tanaka, T.; Carvalho, R.M.; Sano, H. Bond performance of “Touch and Cure” adhesives on resin core systems. Dent. Mater. J. 2016, 35, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Faria-e-Silva, A.L.; Casselli, D.S.A.; Lima, G.S.; Ogliari, F.A.; Piva, E.; Martins, L.R.M. Kinetics of conversion of two dual-cured adhesive systems. J. Endod. 2008, 34, 1115–1118. [Google Scholar] [CrossRef]
- Sanares, A.M.; Itthangurun, A.; King, N.M.; Tay, F.R.; Pashley, D.H. Adverse surface interactions between one-bottle light-cured adhesives and chemical-cured composites. Dent. Mater. 2001, 17, 542–556. [Google Scholar] [CrossRef]
- Τay, F.R.; Pashley, D.H.; You, C.K.; Sanares, A.M.; Wei, S.H. Factors contributing to the incompatibility between simplified-step adhesives and chemically-cured or dual-cured composites. Part I. Single-step self-etching adhesive. J. Adhes. Dent. 2003, 5, 27–40. [Google Scholar]
- Τay, F.R.; Suh, B.I.; Pashley, D.H.; Prati, C.; Chuang, S.F.; Li, F. Factors contributing to the incompatibility between simplified-step adhesives and chemically-cured or dual-cured composites. Part II. Single-bottle, total-etch adhesive. J. Adhes. Dent. 2003, 5, 91–105. [Google Scholar]
- Kim, Y.K.; Chun, J.N.; Kwon, P.C.; Kim, K.H.; Kwon, T.Y. Polymerization kinetics of dual-curing adhesive systems when used solely or in conjunction with chemically-cured resin cement. J. Adhes. Dent. 2013, 15, 453–459. [Google Scholar]
- Rathke, A.; Balz, U.; Muche, R.; Haller, B. Effects of self-curing activator and curing protocol on the bond strength of composite core buildups. J. Adhes. Dent. 2012, 14, 39–46. [Google Scholar]
- ISO 14577-1:2002. Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters; International Organization for Standardization: Geneva, Switzerland, 2002. [Google Scholar]
- Watts, D.C.; Amer, O.M.; Combe, E.C. Surface hardness development in light-cured composites. Dent. Mater. 1987, 3, 265–269. [Google Scholar] [CrossRef]
- Aksornmuang, J.; Nakajima, M.; Foxton, R.; Tagami, J. Mechanical properties and bond strength of dual-cure resin composites to root canal dentin. Dent. Mater. 2007, 23, 226–234. [Google Scholar] [CrossRef]
- Dwiandhany, W.; Abdou, A.; Tichy, A.; Yonekura, K.; Ikeda, M.; Hosaka, K.; Tagami, J.; Nakajima, M. Additive effects of touch-activated polymerization and extended irradiation time on bonding of light-activated adhesives to root canal dentin. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Borges, B.C.D.; Vilela, A.R.R.C.; da Silva, C.A., Jr.; Souza, E.J., Jr.; Sinhoreti, M.A.C.; Pinheiro, F.H.S.L.; Braz, R.; Montes, M.A.J.R. Dual-cured etch-and-rinse adhesive systems increase the bond durability of direct coronal dentin restorations. Oper. Dent. 2013, 38, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Arrais, C.A.G.; Giannini, M.; Rueggeberg, F.A. Effect of sodium sulfinate salts on the polymerization characteristics of dual-cured resin cement systems exposed to attenuated light-activation. J. Dent. 2009, 37, 219–227. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Benino, Y.; Nakamura, A.; Hara, T.; Maruo, Y.; Yoshida, Y.; Van Meerbeek, B. Touch-cure polymerization at the composite cement-dentin interface. J. Dent. Res. 2021. [Google Scholar] [CrossRef]
- Vankerckhoven, H.; Lambrechts, P.; Van Beylen, M.; Davidson, C.L.; Vanherle, G. Unreacted methacrylate groups on the surfaces of composite resins. J. Dent. Res. 1983, 61, 791–795. [Google Scholar] [CrossRef]
- Kiteska, B.; Funduk, N.; Cevc, P.; Jesih, A.; Anžlovar, A.; Kopa, I. The influence of free-radical concentration on the shear bond strength of dental composites. Mater. Technol. 2018, 52, 177–182. [Google Scholar]
- Eamsa-ard, P. The Multiple Evaluations of the Influence of Light Conditions to “Touch and Cure” Resin Cements—In Terms of Bond Strength Test, In Situ Microhardness Test and Raman Spectroscopy. Ph.D. Thesis, Hokkaido University, Sapporo, Japan, 2020. [Google Scholar]
- Oyen, M.L.; Cook, R.F. A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed. Mater. 2009, 2, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Meng, X. Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites. J. Appl. Oral Sci. 2014, 22, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaintantzopoulou, M.; Rahiotis, C.; Eliades, G. Molecular characterization of one-step self-etching adhesives placed on dentin and inert substrate. J. Adhes. Dent. 2008, 10, 83–93. [Google Scholar] [PubMed]
Product (Code) | Composition * | Manufacturer |
---|---|---|
Clearfil DC Core Plus (CF) Clearfil S3 Bond Plus (CB) | Bis-GMA, TEGDMA, hydrophilic aliphatic dimethacrylate, hydrophobic aromatic dimethacrylate, silanated BA-glass filler, silanated SiO2, Al2O3 filler, initiators, pigments, accelerators. (Filler: 74% w/52% v, 0.01–20 μm) Shade: dentine 10-MDP, Bis-GMA, 2-HEMA, hydrophilic aliphatic dimethacrylate, hydrophobic aliphatic methacrylate, colloidal SiO2, NaF, accelerators, initiators, ethanol, water (pH = 2.3) | Kuraray Noritake Dental Inc., Okayama, Japan |
Gradia Core (GC) G-Premio Bond (GB) G-Premio Bond DCA (GD) | UDMA, NPGDMA, GDMA, TEGDMA, silanated Al-F-silicate glass, amorphous SiO2, TiO2, Fe2O3, MgO, initiators, accelerators. (Filler: 75% w) Shade: universal 10-MDP, 4-MET, MTDP, methacrylic acid ester, silica, acetone, water, photo-initiators (pH = 1.5). Ethanol, catalyst. | GC Corporation, Tokyo, Japan |
Product | Martens Hardness (N/mm2) | |||
---|---|---|---|---|
DC | SC | SA-T | SA-B | |
CF | 528 (14) a | 440 (22) b | 447 (22) b | 499 (12) c |
GC | 568 (11) a | 493 (24) b | 495 (32) b | 530 (14) a |
Product | Degree of C=C Conversion (%) | |||
---|---|---|---|---|
DC | SC | SA-T | SA-B | |
CF | 61.9 (3.6) a | 54.9 (2.2) b | 55.1 (2.5) b | 59.5 (2) a,b |
GC | 59.2 (1.5) a | 54.7 (1.8) b | 54 (2.4) b | 57.6 (1.4) a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadi, M.; Petropoulou, A.; Masouras, K.; Zafiropoulou, M.; Zinelis, S.; Eliades, G. The Effect of Touch-Cure Polymerization on the Conversion and Hardness of Core Build-Up Resin Composites: A Laboratory Study. Materials 2021, 14, 6025. https://doi.org/10.3390/ma14206025
Dimitriadi M, Petropoulou A, Masouras K, Zafiropoulou M, Zinelis S, Eliades G. The Effect of Touch-Cure Polymerization on the Conversion and Hardness of Core Build-Up Resin Composites: A Laboratory Study. Materials. 2021; 14(20):6025. https://doi.org/10.3390/ma14206025
Chicago/Turabian StyleDimitriadi, Maria, Aikaterini Petropoulou, Konstantinos Masouras, Maria Zafiropoulou, Spiros Zinelis, and George Eliades. 2021. "The Effect of Touch-Cure Polymerization on the Conversion and Hardness of Core Build-Up Resin Composites: A Laboratory Study" Materials 14, no. 20: 6025. https://doi.org/10.3390/ma14206025
APA StyleDimitriadi, M., Petropoulou, A., Masouras, K., Zafiropoulou, M., Zinelis, S., & Eliades, G. (2021). The Effect of Touch-Cure Polymerization on the Conversion and Hardness of Core Build-Up Resin Composites: A Laboratory Study. Materials, 14(20), 6025. https://doi.org/10.3390/ma14206025