In-Plane Behaviour of Masonry Walls: Numerical Analysis and Design Formulations
Abstract
:1. Introduction
2. Italian Code Formulations for the In-Plane Resistances of Masonry Walls
2.1. In-Plane Strength Models for Irregular/Rubble Masonry Walls
- -
- diagonal shear failure (DS):
- -
- flexural failure (F):
2.2. In-Plane Strength Models for Regular Masonry Walls
- -
- horizontal sliding shear failure (HSS):
- -
- diagonal sliding shear failure (DSS):
- -
- tensile diagonal cracking (TDC):
2.3. Considerations of In-Plane Strength Models for Regular and Irregular Masonry Walls
3. Description and Calibration of the Numerical Models
3.1. Non-Linear FEM
3.2. Non-Linear DMEM
3.3. Calibration of the Numerical Models against Experimental Case Studies
4. Parametric Analyses and Comparison with Theoretical Formulations
4.1. Definition of Ranges of Variability for the Mechanical Parameters
- Group A (Table 3): refers to the choice of four types of masonry characterized by different values of the compressive strength fc, assumed as main parameter and variable in the range 1.5–6.0 MPa. All the remaining parameters vary according to fc, as follows: ft is assumed as 5% of fc, τ0 is equal to ft/1.5, Gc and Gt are obtained by applying Equations (8) and (9) based on the values of ft and fc;
- Group B (Table 4): refers to the variation of the tensile strength ft, which is assumed as a main parameter and variable in the range 0.08–0.45 MPa; the related parameters (i.e., fracture energy in tension and ultimate strain in tension) are varied consequently for two levels of σ0 and three values of fc;
- Group C (Table 5): refers to the variation of the fracture energy in compression Gc, which changes in the range 2–10.6 N/mm and determines the consequent variation of the ultimate strains in compression εcr for two levels of σ0 and two values of fc;
- Group D (Table 6): refers to the variation of the fracture energy in tension Gt, which changes in the range 0.003–0.05 N/mm and determines the related variation of the ultimate strains in tension εtr for two levels of σ0 and two values of fc.
4.2. Group A: Compression Strength fc Variable
4.3. Group B: Tensile Strength ft Variable
4.4. Group C: Fracture Energy in Compression Gc Variable
4.5. Group D: Fracture Energy in Tension Gt Variable
5. Discussion on the Shape Factor b Value by Comparing Numerical and Theoretical Shear Capacities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffith, M.C.; Magenes, G.; Melis, G.; Picchi, L. Picchi, Evaluation of out-of-plane stability of unreinforced masonry walls subjected to seismic excitation. J. Earthq. Eng. 2003, 7, 141–169. [Google Scholar] [CrossRef]
- D’Ayala, D.; Speranza, E. Definition of Collapse Mechanisms and Seismic Vulnerability of Historic Masonry Buildings. Earthq. Spectra 2003, 19, 479–509. [Google Scholar] [CrossRef]
- Sorrentino, L.; D’Ayala, D.; De Felice, G.; Griffith, M.C.; Lagomarsino, S.; Magenes, G. Review of Out-of-Plane Seismic Assessment Techniques Applied To Existing Masonry Buildings. Int. J. Arch. Herit. 2016, 11, 2–21. [Google Scholar] [CrossRef]
- Casapulla, C. Local out-of-plane failure modes in traditional block-masonry buildings. In Masonry Construction in Active Seismic Regions; Woodhead Publishing Series in Civil and Structural Engineering; Rupakhety, R., Gautam, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 289–322. [Google Scholar]
- Solarino, F.; Oliveira, D.; Giresini, L. Wall-to-horizontal diaphragm connections in historical buildings: A state-of-the-art review. Eng. Struct. 2019, 199, 109559. [Google Scholar] [CrossRef]
- Giresini, L. Design strategy for the rocking stability of horizontally restrained masonry walls. In Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes Island, Greece, 15–17 June 2017; pp. 2963–2979. [Google Scholar]
- Puppio, M.L.; Giresini, L. Estimation of tensile mechanical parameters of existing masonry through the analysis of the collapse of Volterra’s urban walls. Frattura ed Integrità Strutturale 2019, 13, 725–738. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Grillanda, N.; Tralli, A. A fast and general upper-bound limit analysis approach for out-of-plane loaded masonry walls. Meccanica 2018, 53, 1875–1898. [Google Scholar] [CrossRef]
- Funari, M.F.; Spadea, S.; Lonetti, P.; Fabbrocino, F.; Luciano, R. Visual programming for structural assessment of out-of-plane mechanisms in historic masonry structures. J. Build. Eng. 2020, 31, 101425. [Google Scholar] [CrossRef]
- Vaculik, J.; Griffith, M.C. Out-of-plane shaketable testing of unreinforced masonry walls in two-way bending. Bull. Earthq. Eng. 2018, 16, 2839–2876. [Google Scholar] [CrossRef]
- Celano, T.; Argiento, L.; Ceroni, F.; Casapulla, C. Literature Review of the In-Plane Behavior of Masonry Walls: Theoretical vs. Experimental Results. Materials 2021, 14, 3063. [Google Scholar] [CrossRef]
- Vasconcelos, G.; Lourenço, P.B. In-plane experimental behavior of stone masonry walls under cyclic loading. J. Struct. Eng. 2009, 135, 1269–1277. [Google Scholar] [CrossRef]
- Haach, V.G.; Vasconcelos, G.; Lourenço, P.B. Parametrical study of masonry walls subjected to in-plane loading through numerical modeling. Eng. Struct. 2011, 33, 1377–1389. [Google Scholar] [CrossRef]
- Tomaževič, M.; Lutman, M.; Petković, L. Seismic Behavior of Masonry Walls: Experimental Simulation. J. Struct. Eng. 1996, 122, 1040–1047. [Google Scholar] [CrossRef]
- Petry, S.; Beyer, K. Limit states of modern unreinforced clay brick masonry walls subjected to in-plane loading. Bull. Earthq. Eng. 2015, 13, 1073–1095. [Google Scholar] [CrossRef] [Green Version]
- Casapulla, C.; Argiento, L. In-plane frictional resistances in dry block masonry walls and rocking-sliding failure modes revisited and experimentally validated. Compos. Part B Eng. 2018, 132, 197–213. [Google Scholar] [CrossRef]
- Mayes, R.L.; Clough, R.W. State-of-the-Art in Seismic Shear Strength of Masonry—An Evaluation and Review; Report No. EERC 75-21; Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 1975. [Google Scholar]
- Tomazevic, M.; Weiss, P.A. A rational, experimentally based method for the verification of earthquake resistance of masonry buildings. In Proceedings of the 4th U.S. National Conference on Earthquake Engineering, Palm Springs, CA, USA, 20–24 May 1990; pp. 349–359. [Google Scholar]
- Yokel, F.Y.; Fattal, S.G. Failure Hypothesis for Masonry Shear Walls. J. Struct. Div. 1976, 102, 515–532. [Google Scholar] [CrossRef]
- Priestley, M.J.N.; Bridgeman, D.O. Seismic resistance of brick masonry walls. Bull. N. Z. Natl. Soc. Earthq. Eng. 1974, 7, 167–187. [Google Scholar]
- Benedetti, D.; Carydis, P.; Limongelli, M.P. Evaluation of the seismic response of masonry buildings based on energy functions. Earthq. Eng. Struct. Dyn. 2001, 30, 1061–1081. [Google Scholar] [CrossRef] [Green Version]
- Anthoine, A.; Magonette, G.; Magenes, G. Shear-compression testing and analysis of brick masonry walls. In Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, 28 August–2 September 1995. Duma, G., Ed, Balkema, A.A., Brookfield, VT, USA. [Google Scholar]
- Magenes, G.; Calvi, G.M. In-plane seismic response of brick masonry walls. Earthq. Eng. Struct. Dyn. 1997, 26, 1091–1112. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Giresini, L.; Solarino, F.; Paganelli, O.; Oliveira, D.V.; Froli, M. ONE-SIDED rocking analysis of corner mechanisms in masonry structures: Influence of geometry, energy dissipation, boundary conditions. Soil Dyn. Earthq. Eng. 2019, 123, 357–370. [Google Scholar] [CrossRef]
- Ministero delle Infrastrutture e dei Trasporti. Aggiornamento delle "Norme Tecniche per le Costruzioni"; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2018. [Google Scholar]
- Ministero delle Infrastrutture e dei Trasporti. Istruzioni per l’Applicazione dell’Aggiornamento delle ‘Norme Tecniche per le Costruzioni’ di cui al Decreto Ministeriale 17 Gennaio 2018, Circolare 21 gennaio 2019, n. 7 C.S.LL.PP; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2019. [Google Scholar]
- DIANA FEA BV. Diana User’s Manual, Release 10.3. 2019. Available online: www.dianafea.com (accessed on 25 September 2021).
- Gruppo Sismica. 3DMacro, Computer Program for the Seismic Assessment of Masonry Buildings; srl-2009; Gruppo Sismica: Catania, Italy, 2021. [Google Scholar]
- Lourenço, P.B. Computational Strategies for Masonry Structures. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 1996. [Google Scholar]
- Caliò, I.; Marletta, M.; Pantò, B. A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings. Eng. Struct. 2012, 40, 327–338. [Google Scholar] [CrossRef]
- Turnšek, V.; Čačovič, F. Some experimental results on the strength of brick masonry walls. In Proceeding of the 2nd International Brick Masonry Conference, Stoke-on-Trent, London, UK, 12–15 April 1970; pp. 149–156. [Google Scholar]
- Tomaževič, M. Shear resistance of masonry walls and Eurocode 6: Shear versus tensile strength of masonry. Mater. Struct. 2008, 42, 889–907. [Google Scholar] [CrossRef]
- Eurocode 6. Design of Masonry Structures—Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures; ICS 91.010.30; European Committee for Standardization: Brussels, Belgium, 2005.
- Argiento, L.U.; Celano, T.; Ceroni, F.; Casapulla, C. Modelling Strategies for the In-plane Behaviour of Iron-framed Masonry Structures: Parametric Analysis on Simple Panels and a Church Façade. Int. J. Arch. Herit. 2020. [Google Scholar] [CrossRef]
- Lourenço, P.B. Recent advances in masonry modelling: Micro-modelling and homogenization. In Computational and Experimental Methods in Structures; Galvanetto, U., Aliabadi, M.H.F., Eds.; World Scientific: Singapore, 2009; Volume 3, pp. 251–294. [Google Scholar]
- Caliò, I.; Pantò, B. A macro-element modelling approach of infilled frame structures. Comput. Struct. 2014, 143, 91–107. [Google Scholar] [CrossRef]
- Betti, M.; Galano, L.; Petracchi, M.; Vignoli, A. Diagonal cracking shear strength of unreinforced masonry panels: A correction proposal of the b shape factor. Bull. Earthq. Eng. 2015, 13, 3151–3186. [Google Scholar] [CrossRef]
- Calderini, C.; Cattari, S.; Lagomarsino, S. In-plane strength of unreinforced masonry piers. Earthq. Eng. Struct. Dyn. 2009, 38, 243–267. [Google Scholar] [CrossRef]
Parameter | FEM | DMEM | ||
---|---|---|---|---|
Young’s modulus | E | [MPa] | 1700 | 1943 |
Poisson’s ratio | ν | - | 0.20 | 0.20 |
Compressive strength | fc | [MPa] | 6.20 | 6.20 |
Tensile strength | ft | [MPa] | 0.25 | 0.25 |
Compressive fracture energy | Gc | [N/mm] | 10 | - |
Tensile fracture energy | Gt | [N/mm] | 0.012 | - |
Compressive ductility | βc | - | - | 4.6 |
Tensile ductility | βt | - | - | 3.3 |
Shear modulus | G | [MPa] | - | 816 |
Shear strength | τ0 | [MPa] | - | 0.17 |
Shear strain capacity | γu | [%] | - | 0.5 |
Pre-compression stress | σ0 | [MPa] | 0.6 | 0.6 |
Case | Experimental [kN] | Numerical Shear Resistance [kN] | Theoretical Resistance [kN] | ||
---|---|---|---|---|---|
FEM | DMEM | Equation (1) DS | Equation (2) F | ||
Slender wall | 70.5 | 68.5 | 68.2 | 76.8 | 66.5 |
Squat wall | 81.0 | 88.1 | 79.4 | 85.4 | 98.5 |
Group A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Case | σ0 | ft | fc | E | w | Gt | Gc | τ0 | εtr | εcr |
[MPa] | [MPa] | [MPa] | [MPa] | [kN/m3] | [N/mm] | [N/mm] | [MPa] | [%] | [%] | |
1.1 | 0.30 | 0.05 | 1.50 | 1000 | 18 | 0.005 | 3.98 | 0.03 | 0.15 | 3.90 |
1.2 | 0.15 | 3.00 | 1500 | 0.011 | 7.50 | 0.10 | 0.11 | 3.74 | ||
1.3 | 0.23 | 4.50 | 1800 | 0.014 | 10.58 | 0.15 | 0.10 | 3.57 | ||
1.4 | 0.30 | 6.00 | 2400 | 0.017 | 13.20 | 0.20 | 0.09 | 3.36 | ||
1.5 | 0.60 | 0.05 | 1.50 | 1000 | 18 | 0.005 | 3.98 | 0.03 | 0.15 | 3.90 |
1.6 | 0.15 | 3.00 | 1500 | 0.011 | 7.50 | 0.10 | 0.11 | 3.74 | ||
1.7 | 0.23 | 4.50 | 1800 | 0.014 | 10.58 | 0.15 | 0.10 | 3.57 | ||
1.8 | 0.30 | 6.00 | 2400 | 0.017 | 13.20 | 0.20 | 0.09 | 3.36 |
Group B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Case | σ0 | ft | fc | E | w | Gt | Gc | τ0 | εtr | εcr |
[MPa] | [MPa] | [MPa] | [MPa] | [kN/m3] | [N/mm] | [N/mm] | [MPa] | [%] | [%] | |
2.1 | 0.30 | 0.08 | 3.0 | 1500 | 18 | 0.007 | 7.50 | 0.05 | 0.13 | 3.74 |
2.2 = 1.2 | 0.15 | 0.011 | 0.10 | 0.11 | ||||||
2.3 | 0.30 | 0.017 | 0.20 | 0.10 | ||||||
2.4 | 0.30 | 0.11 | 4.5 | 1800 | 18 | 0.009 | 10.6 | 0.075 | 0.12 | 3.57 |
2.5 = 1.3 | 0.23 | 0.014 | 0.15 | 0.10 | ||||||
2.6 | 0.45 | 0.023 | 0.30 | 0.10 | ||||||
2.7 | 0.60 | 0.11 | 4.5 | 1800 | 18 | 0.009 | 10.6 | 0.075 | 0.12 | 3.57 |
2.8 = 1.7 | 0.23 | 0.014 | 0.15 | 0.10 | ||||||
2.9 | 0.45 | 0.023 | 0.30 | 0.10 | ||||||
2.10 | 0.60 | 0.15 | 6.0 | 2400 | 18 | 0.011 | 13.2 | 0.10 | 0.11 | 3.36 |
2.11 = 1.8 | 0.30 | 0.017 | 0.20 | 0.09 | ||||||
2.12 | 0.45 | 0.023 | 0.30 | 0.09 |
Group C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Case | σ0 | ft | fc | E | w | Gt | Gc | τ0 | εtr | εcr |
[MPa] | [MPa] | [MPa] | [MPa] | [kN/m3] | [N/mm] | [N/mm] | [MPa] | [%] | [%] | |
3.1 | 0.30 | 0.15 | 3.00 | 1500 | 18 | 0.011 | 2.0 | 0.10 | 0.11 | 1.14 |
3.2 | 4.0 | 2.07 | ||||||||
3.3 = 1.2 | 7.5 | 3.74 | ||||||||
3.4 | 0.30 | 0.23 | 4.50 | 1800 | 18 | 0.014 | 4.0 | 0.15 | 0.10 | 1.50 |
3.5 | 7.5 | 2.61 | ||||||||
3.6 = 1.3 | 10.6 | 3.57 | ||||||||
3.7 | 0.60 | 0.23 | 4.50 | 1800 | 18 | 0.014 | 4.0 | 0.15 | 0.10 | 1.50 |
3.8 | 7.5 | 2.61 | ||||||||
3.9 = 1.7 | 10.6 | 3.57 |
Group D | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Case | σ0 | ft | fc | E | w | Gt | Gc | τ0 | εtr | εcr |
[MPa] | [MPa] | [MPa] | [MPa] | [kN/m3] | [N/mm] | [N/mm] | [MPa] | [%] | [%] | |
4.1 | 0.30 | 0.15 | 3.00 | 1500 | 18.00 | 0.003 | 7.5 | 0.10 | 0.04 | 3.74 |
4.2 | 0.005 | 0.06 | ||||||||
4.3 = 1.2 | 0.011 | 0.11 | ||||||||
4.4 | 0.028 | 0.27 | ||||||||
4.5 | 0.30 | 0.23 | 4.50 | 1800 | 18.00 | 0.005 | 10.6 | 0.15 | 0.04 | 3.57 |
4.6 = 1.3 | 0.014 | 0.10 | ||||||||
4.7 | 0.028 | 0.19 | ||||||||
4.8 | 0.050 | 0.33 | ||||||||
4.9 | 0.60 | 0.23 | 4.50 | 1800 | 18.00 | 0.005 | 10.6 | 0.15 | 0.04 | 3.57 |
4.10 = 1.7 | 0.014 | 0.10 | ||||||||
4.11 | 0.028 | 0.19 | ||||||||
4.12 | 0.050 | 0.33 |
Case | σ0 [MPa] | fc [MPa] | ft [MPa] | FEM | DMEM | DMEM vs. FEM | Theor. Resistance | Theor. vs. FEM | Theor. vs. DMEM | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | FM | ΔV | V | FM | ΔV | ΔVnum | VF Equation (2) | VDS Equation (1) | ΔVth | ΔVth | ||||
[kN] | [%] | [kN] | [%] | [%] | [kN] | [kN] | [%] | [%] | ||||||
1.1 | 0.30 | 1.50 | 0.05 | 48.9 | DS | - | 46.6 | DS | - | −4.7 | 86.0 | 46.7 | −4.5 | +0.3 |
1.2 | 3.00 | 0.15 | 80.7 | DS | +65.0 | 82.1 | DS | +76.3 | 1.8 | 99.3 | 97.4 | +20.7 | +18.6 | |
1.3 | 4.50 | 0.23 | 106.2 | F | +117.2 | 99.3 | F | +113.2 | −6.5 | 103.7 | 128.9 | −2.4 | +4.4 | |
1.4 | 6.00 | 0.30 | 108.1 | F | +121.0 | 122.6 | F | +163.1 | 13.4 | 105.9 | 159.1 | −2.0 | −13.6 | |
1.5 | 0.60 | 1.50 | 0.05 | 71.8 | DS | - | 65.3 | DS | - | −9.0 | 119.1 | 63.9 | −11.0 | −2.2 |
1.6 | 3.00 | 0.15 | 111.5 | DS | +55.4 | 117.6 | DS | +80.1 | 5.5 | 172.1 | 125.8 | +12.8 | +6.9 | |
1.7 | 4.50 | 0.23 | 134.8 | DS | +87.9 | 138.7 | DS | +112.4 | 2.9 | 189.7 | 161.6 | +19.8 | +16.5 | |
1.8 | 6.00 | 0.30 | 162.8 | DS | +126.9 | 176.3 | DS | +170.0 | 8.3 | 198.5 | 194.9 | +19.7 | +10.5 |
Case | σ0 [MPa] | ft [MPa] | fc [MPa] | FEM | DMEM | DMEM vs. FEM | Theor. Resistance | Theor. vs. FEM | Theor. vs. DMEM | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | FM | ΔV | V | FM | ΔV | ΔVnum | VF Equation (2) | VDS Equation (1) | ΔVth | ΔVth | ||||
[kN] | [%] | [kN] | [%] | [%] | [kN] | [kN] | [%] | [%] | ||||||
2.1 | 0.30 | 0.08 | 3.0 | 72.4 | DS | - | 61.3 | DS | - | −15.4 | 99.3 | 62.9 | −13.2 | +2.6 |
2.2 | 0.15 | 80.7 | DS | +11.4 | 82.1 | DS | +34.0 | +1.8 | 99.3 | 97.3 | +20.6 | +18.5 | ||
2.3 | 0.30 | 102.9 | F | +42.1 | 114.1 | F | +86.2 | +10.9 | 99.3 | 159.1 | −3.5 | −13.0 | ||
2.4 | 0.30 | 0.11 | 4.5 | 78.5 | DS | - | 72.3 | DS | - | −7.8 | 103.7 | 80.8 | +3.0 | +11.7 |
2.5 | 0.23 | 106.2 | DS | +35.4 | 99.3 | DS | +37.3 | −6.5 | 103.7 | 128.9 | −2.4 | +4.4 | ||
2.6 | 0.45 | 108.8 | F | +38.7 | 144.6 | F | +99.9 | +32.9 | 103.7 | 217.9 | −4.7 | −28.3 | ||
2.7 | 0.60 | 0.11 | 4.5 | 116.4 | DS | - | 100.7 | DS | - | −13.6 | 189.7 | 106.2 | −8.8 | +5.5 |
2.8 | 0.23 | 134.8 | DS | +15.8 | 138.7 | DS | +37.8 | +2.9 | 189.7 | 161.6 | +19.8 | +16.5 | ||
2.9 | 0.45 | 190.8 | F | +63.8 | 188.1 | F | +86.9 | −1.4 | 189.7 | 257.8 | −0.6 | +0.9 | ||
2.10 | 0.60 | 0.15 | 6.0 | 125.2 | DS | - | 117.6 | DS | - | −6.1 | 198.5 | 125.8 | +0.5 | +7.0 |
2.11 | 0.30 | 162.8 | DS | +30.0 | 176.3 | DS | +50.0 | +8.3 | 198.5 | 194.9 | +19.7 | +10.5 | ||
2.12 | 0.45 | 201.3 | F | +60.7 | 188.1 | F | +60.0 | −6.5 | 198.5 | 257.8 | −1.4 | +5.6 |
Case | σ0 [MPa] | Gc [N/mm] | fc [MPa] | ft [MPa] | FEM | DMEM | DMEM vs. FEM | Theor. Resistance | Theor. vs. FEM | Theor. vs. DMEM | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | FM | ΔV | V | FM | ΔV | ΔVnum | VF. Equation (2) | VDS Equation (1) | ΔVth | ΔVth | |||||
[kN] | [%] | [kN] | [%] | [%] | [kN] | [kN] | [%] | [%] | |||||||
3.1 | 0.30 | 2.0 | 3.0 | 0.15 | 80.7 | DS | - | 82.1 | DS | - | +1.8 | 99.3 | 97.4 | +20.7 | +18.6 |
3.2 | 4.0 | DS | 0 | DS | 0 | +1.8 | |||||||||
3.3 | 7.5 | DS | 0 | DS | 0 | +1.8 | |||||||||
3.4 | 0.30 | 4.0 | 4.5 | 0.23 | 106.5 | DS | - | 99.3 | DS | - | −6.7 | 103.7 | 128.9 | +21.0 | +30.0 |
3.5 | 7.5 | 106.4 | DS | 0 | DS | 0 | −6.7 | +21.0 | |||||||
3.6 | 10.6 | 106.2 | DS | 0 | DS | 0 | −6.5 | +21.3 | |||||||
3.7 | 0.60 | 4.0 | 4.5 | 0.23 | 135.9 | DS | - | 138.7 | DS | - | +2.1 | 189.7 | 161.6 | +18.9 | +16.5 |
3.8 | 7.5 | 139.7 | DS | +3 | DS | 0 | −0.7 | +15.7 | |||||||
3.9 | 10.6 | 134.8 | DS | −1 | DS | 0 | +2.9 | +19.8 |
Case | σ0 [MPa] | Gt [N/mm] | fc [MPa] | ft [MPa] | FEM | DMEM | DMEM vs. FEM | Theor. Resistance | Theor. vs. FEM | Theor. vs. DMEM | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | FM | ΔV | V | FM | ΔV | ΔVnum | VF Equation (2) | VDS Equation (1) | ΔVth | ΔVth | |||||
[kN] | [%] | [kN] | [%] | [%] | [kN] | [kN] | [%] | [%] | |||||||
4.1 | 0.30 | 0.003 | 3.0 | 0.15 | 73.2 | DS | - | 79.7 | DS | - | +8.8 | 99.3 | 97.4 | +33.0 | +22.2 |
4.2 | 0.005 | 76.1 | DS | +3.9 | 80.9 | DS | +1.5 | +6.4 | +28.1 | +20.4 | |||||
4.3 | 0.011 | 80.7 | DS | +10.2 | 82.1 | DS | +3.1 | +1.8 | +20.7 | +18.6 | |||||
4.4 | 0.028 | 80.9 | DS | +10.5 | 85.5 | DS | +7.3 | +5.6 | +20.3 | +13.9 | |||||
4.5 | 0.30 | 0.005 | 4.5 | 0.23 | 102.3 | DS | - | 95.6 | DS | - | −6.5 | 103.7 | 128.9 | +26.0 | +34.8 |
4.6 | 0.014 | 106.2 | DS | +3.8 | 99.3 | DS | +3.8 | −6.5 | +21.3 | +29.8 | |||||
4.7 | 0.028 | 111.0 | DS | +8.5 | 101.8 | DS | +6.5 | −8.3 | +16.1 | +26.6 | |||||
4.8 | 0.050 | 111.2 | F | +8.7 | 106.7 | F | +11.6 | −4.1 | −6.8 | −2.8 | |||||
4.9 | 0.60 | 0.005 | 4.5 | 0.23 | 126.8 | DS | - | 135.5 | DS | - | +6.9 | 189.7 | 161.6 | +27.4 | +19.2 |
4.10 | 0.014 | 134.8 | DS | +6.3 | 138.7 | DS | +2.4 | +2.9 | +19.8 | +16.5 | |||||
4.11 | 0.028 | 145.1 | DS | +14.5 | 141.7 | DS | +4.6 | −2.4 | +11.3 | +14.0 | |||||
4.12 | 0.050 | 146.1 | DS | +15.2 | 143.4 | DS | +5.8 | −1.9 | +10.6 | +12.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celano, T.; Argiento, L.U.; Ceroni, F.; Casapulla, C. In-Plane Behaviour of Masonry Walls: Numerical Analysis and Design Formulations. Materials 2021, 14, 5780. https://doi.org/10.3390/ma14195780
Celano T, Argiento LU, Ceroni F, Casapulla C. In-Plane Behaviour of Masonry Walls: Numerical Analysis and Design Formulations. Materials. 2021; 14(19):5780. https://doi.org/10.3390/ma14195780
Chicago/Turabian StyleCelano, Thomas, Luca Umberto Argiento, Francesca Ceroni, and Claudia Casapulla. 2021. "In-Plane Behaviour of Masonry Walls: Numerical Analysis and Design Formulations" Materials 14, no. 19: 5780. https://doi.org/10.3390/ma14195780
APA StyleCelano, T., Argiento, L. U., Ceroni, F., & Casapulla, C. (2021). In-Plane Behaviour of Masonry Walls: Numerical Analysis and Design Formulations. Materials, 14(19), 5780. https://doi.org/10.3390/ma14195780