Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, C.H.; Fu, C.-C.; Juang, R.-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Yamada, N.; Maruya, K.; Yamaguchi, Y.; Cao, X.; Ninomiya, Y. p- to n-Type Conversion and Nonmetal–Metal Transition of Lithium-Inserted Cu3N Films. Chem. Mater. 2015, 27, 8076–8083. [Google Scholar] [CrossRef]
- Khan, S.A.; Tiwari, G.; Tripathi, R.P.; Alvi, M.A.; Khan, Z.H.; Alagel, F.A. Structural, Optical and Electrical Characterization of Polycrystalline Ga0.15Te0.85−xZnx Nano-Structured Thin Films. Adv. Sci. Lett. 2014, 20, 1715–1718. [Google Scholar] [CrossRef]
- Han, F.; Kambala, V.S.R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl. Catal. A Gen. 2009, 359, 25–40. [Google Scholar] [CrossRef]
- Gamoudi, S.; Srasra, E. Adsorption of organic dyes by HDPy+-modified clay: Effect of molecular structure on the adsorption. J. Mol. Struct. 2019, 1193, 522–531. [Google Scholar] [CrossRef]
- Han, J.; Jun, B.-M.; Heo, J.; Kim, S.; Yoona, Y.; Park, C.M. Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure. Ecotoxicol. Environ. Saf. 2019, 182, 109396. [Google Scholar] [CrossRef]
- Fu, Y.; Liang, W.; Guo, J.; Tang, H.; Liu, S. MoS2 quantum dots decorated g-C3N4/Ag heterojunctions for enhanced visible light photocatalytic activity. Appl. Surf. Sci. 2018, 430, 234–242. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yang, W.; Li, F.; Zhao, J.; Liu, R.; Liu, S.; Li, B. Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. J. Hazard. Mater. 2015, 292, 126–136. [Google Scholar] [CrossRef]
- Peng, L.; Xie, T.; Lu, Y.; Fan, H.; Wang, D. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 2010, 12, 8033–8041. [Google Scholar] [CrossRef]
- Qu, Y.; Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580. [Google Scholar] [CrossRef]
- He, H.; Lin, J.; Fu, W.; Wang, X.; Wang, H.; Zeng, Q.; Gu, Q. MoS2/TiO2 edge-on heterojunction for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600464. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; He, H.; Ye, Z. Large-area ZnO/MoS2 heterojunction grown by pulsed laser deposition. Mater. Lett. 2019, 253, 187–190. [Google Scholar] [CrossRef]
- Ganatra, R.; Zhang, Q. Few-Layer MoS2: A Promising Layered Semiconductor. ACS Nano 2014, 8, 4074–4099. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhu, W.; Gong, C.M.; Xiao, J.; Zhu, L.; Wang, Z.; Ma, S. Effect of Deposition Pressure on the Microstructure and Optical Band Gap of Molybdenum Disulfide Films Prepared by Magnetron Sputtering. Coatings 2019, 9, 570. [Google Scholar] [CrossRef]
- Cai, S.; Guo, P.; Liu, J.; Zhang, D.; Ke, P.; Wang, A.; Zhu, Y. Friction and wear mechanism of MoS2/C composite coatings under atmospheric environment. Tribol. Lett. 2017, 65, 79. [Google Scholar] [CrossRef]
- Chen, Q.; Li, L.L.; Peeters, F.M. Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges. Phys. Rev. B 2018, 97, 085437. [Google Scholar] [CrossRef]
- Chen, Q.; Li, L.L.; Peeters, F.M. Inner and outer ring states of MoS2 quantum rings: Energy spectrum, charge and spin currents. J. Appl. Phys. 2019, 125, 244303. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef]
- Chen, F.; Su, W.; Ding, S.; Fu, L. Growth and optical properties of large-scale MoS2 films with different thickness. Ceram. Int. 2019, 45, 15091–15096. [Google Scholar] [CrossRef]
- Baek, S.H.; Choi, Y.; Choi, W. Large-Area Growth of Uniform Single-Layer MoS2 Thin Films by Chemical Vapor Deposition. Nanoscale Res. Lett. 2015, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, G.; Wang, L. Low humidity-sensitivity of MoS2/Pb nanocomposite coatings. Wear 2016, 350, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Zhang, G.; Wang, L.; Wu, G. Exploring the Tribophysics and Tribochemistry of MoS2 by Sliding MoS2/Ti Composite Coating Under Different Humidity. Tribol. Lett. 2017, 65, 38. [Google Scholar] [CrossRef]
- Phung, H.N.T.; Tran, V.N.K.; Nguyen, L.T.; Phan, L.K.T.; Duong, P.A.; Le, H.V.T. Investigating visible-photocatalytic activity of MoS2/TiO2 heterojunction thin films at various MoS2 deposition times. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef]
- Phung, H.N.T.; Truong, N.D.; Duong, P.A. Influence of MoS2 deposition time on the photocatalytic activity of MoS2/V, N co-doped TiO2 heterojunction thin film in the visible light region. Curr. Appl. Phys. 2018, 18, 737–743. [Google Scholar] [CrossRef]
- Yu, A.; Ma, Y.; Chen, A.; Li, Y.; Zhou, Y.; Wang, Z.; Zhang, J.; Chu, L.; Yang, J.; Li, X. Thermal stability and optical properties of Sc-doped copper nitride films. Vaccum 2017, 141, 243–248. [Google Scholar] [CrossRef]
- Cong, Y.; Ge, Y.; Zhang, T.; Wang, Q.; Shao, M.; Zhang, Y. Fabrication of Z-Scheme Fe2O3–MoS2–Cu2O Ternary Nanofilm with Significantly Enhanced Photoelectrocatalytic Performance. Ind. Eng. Chem. Res. 2018, 57, 881–890. [Google Scholar] [CrossRef]
- Pierson, J.; Horwat, D. Addition of silver in copper nitride films deposited by reactive magnetron sputtering. Scr. Mater. 2008, 58, 568–570. [Google Scholar] [CrossRef]
- Li, J.; Yao, C.; Kong, X.; Li, Z.; Jiang, M.; Zhang, F.; Lei, X. Boosting Hydrogen Production by Electrooxidation of Urea over 3D Hierarchical Ni4N/Cu3N Nanotube Arrays. ACS Sustain. Chem. Eng. 2019, 7, 13278–13285. [Google Scholar] [CrossRef]
- Jiang, A.; Qi, M.; Xiao, J. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review. J. Mater. Sci. Technol. 2018, 34, 1467–1473. [Google Scholar] [CrossRef]
- Xiao, J.; Qi, M.; Cheng, Y.; Jiang, A.; Zeng, Y.; Ma, J. Influences of nitrogen partial pressure on the optical properties of copper nitride films. RSC Adv. 2016, 6, 40895–40899. [Google Scholar] [CrossRef]
- Cremer, R.; Witthaut, M.; Trappe, C.; Laurenzis, M.; Winkler, O.; Kurz, H.; Neuschütz, D. Deposition and Characterization of Metastable Cu3N Layers for Applications in Optical Data Storage. Microchim. Acta 2000, 133, 299–302. [Google Scholar] [CrossRef]
- Jiang, A.; Xiao, J.; Gong, C.; Wang, Z.; Ma, S. Structure and electrical transport properties of Pb-doped copper nitride (Cu3N:Pb) films. Vaccum 2019, 164, 53–57. [Google Scholar] [CrossRef]
- Soares, L.; Alves, A. Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis. Mater. Lett. 2018, 211, 339–342. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, G.-J.; Ba, Y.; Wang, T.; Wang, X.; Liu, Z. Microstructure and tribological properties of MoS2+Zr composite coatings in high humidity environment. Appl. Surf. Sci. 2016, 367, 140–146. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Cao, X.; Gong, C.; Jiang, A.; Cheng, Y.; Xiao, J. Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance. Materials 2020, 13, 1873. https://doi.org/10.3390/ma13081873
Zhu L, Cao X, Gong C, Jiang A, Cheng Y, Xiao J. Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance. Materials. 2020; 13(8):1873. https://doi.org/10.3390/ma13081873
Chicago/Turabian StyleZhu, Liwen, Xiu Cao, Chenyang Gong, Aihua Jiang, Yong Cheng, and Jianrong Xiao. 2020. "Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance" Materials 13, no. 8: 1873. https://doi.org/10.3390/ma13081873
APA StyleZhu, L., Cao, X., Gong, C., Jiang, A., Cheng, Y., & Xiao, J. (2020). Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance. Materials, 13(8), 1873. https://doi.org/10.3390/ma13081873