Europium Doping Impact on the Properties of MBE Grown Bi2Te3 Thin Film
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
3. Results and Discussion
3.1. Crystalographic Structure
3.2. Electronic Structure
3.3. TOF-SIMS Depth Profiles
3.4. Phonon-Electron Interactions
3.5. Local Conductivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Moore, J.E. The birth of topological insulators. Nature 2010, 464, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Chen, Z.-G.; Zou, J. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chin. Phys. B 2018, 27, 048403. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, X.; Ma, C.; Dou, Y.; Wu, W. Review of Development Status of Bi2Te3-Based Semiconductor Thermoelectric Power Generation. Adv. Mater. Sci. Eng. 2018, 1210562. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Wang, W.; Meyer, N.; Bao, L.H.; He, L.; Lang, M.R.; Chen, Z.G.; Che, X.Y.; Post, K.; et al. High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. Appl. Phys. Lett. 2013, 103, 031605. [Google Scholar] [CrossRef]
- Ponraj, J.S.; Xu, Z.-Q.; Dhanabalan, S.C.; Mu, H.; Wang, Y.; Yuan, J.; Li, P.; Thakur, S.; Ashrafi, M.; McCoubrey, K.; et al. Photonics and optoelectronics of two-dimensional materials beyond grapheme. Nanotechnology 2016, 27, 462001. [Google Scholar] [CrossRef]
- Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef]
- Fert, A.; Van Dau, F.N. Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators [La spintronique, de la magnétorésistance géante aux skyrmions magnétiques et isolants topologiques]. Comptes Rendus Phys. 2019, 20, 817–831. [Google Scholar] [CrossRef]
- Yue, C.; Jiang, S.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Device applications of synthetic topological insulator nanostructures. Electronics 2018, 7, 225. [Google Scholar] [CrossRef]
- Chang, P.-H.; Bahramy, M.S.; Nagaosa, N.; Nikolić, B.K. Giant Thermoelectric Effect in Graphene-Based Topological Insulators with Heavy Adatoms and Nanopores. Nano Lett. 2014, 14, 3779–3784. [Google Scholar] [CrossRef]
- Xu, N.; Xu, Y.; Zhu, J. Topological insulators for thermoelectrics. NPJ Quantum Mater. 2017, 2, 51. [Google Scholar] [CrossRef]
- Sacksteder, V.; Ohtsuki, T.; Kobayashi, K. Modification and control of topological insulator surface states using surface disorder. Phys. Rev. Appl. 2015, 3, 064006. [Google Scholar] [CrossRef]
- Wray, L.A.; Xu, S.-Y.; Xia, Y.; Hsieh, D.; Fedorov, A.V.; Hor, Y.S.; Cava, R.J.; Bansil, A.; Lin, H.; Hasan, M.Z. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat. Phys. 2011, 7, 32–37. [Google Scholar] [CrossRef]
- Kim, J.; Shin, E.; Sharma, M.K.; Ihm, K.; Dugerjav, O.; Hwang, C.; Lee, H.; Ko, K.-T.; Park, J.-H.; Kim, H.; et al. Observation of Restored Topological Surface States in Magnetically Doped Topological Insulator. Sci. Rep. 2019, 9, 1331. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Sundaresh, A.; Biswas, S.; Ganesan, R.; Sen, D.; Anil Kumar, P.S. Topological insulator n–p–n junctions in a magnetic field. Nanoscale 2019, 11, 5317–5324. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zhang, R.-X.; Tang, P.; Yang, G.; Sofo, J.; Duan, W.; Liu, C.-X. Heavy Dirac fermions in a graphene/topological insulator hetero-junction. 2D Mater. 2016, 3, 034006. [Google Scholar] [CrossRef]
- Zirnstein, H.G.; Rosenow, B. Time-reversal-symmetric topological magnetoelectric effect in three-dimensional topological insulators. Phys. Rev. B 2017, 96, 201112(R). [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Shi, M.Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X.H.; Zhang, Y. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 23, eaax8156. [Google Scholar] [CrossRef]
- He, K.; Wang, Y.; Xue, Q.-K. Topological Materials: Quantum Anomalous Hall System. Annu. Rev. Conden. Matter Phys. 2018, 9, 329–344. [Google Scholar] [CrossRef]
- Larson, P.; Lambrecht, W.R.L. Electronic structure and magnetism in Bi2Te3, Bi 2Se3, and Sb2Te3 doped with transition metals (Ti-Zn). Phys. Rev. B 2008, 78, 195207. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jo, N.H.; Lee, K.J.; Yoon, J.B.; You, C.Y.; Jung, M.H. Transport and magnetic properties of Cr-, Fe-, Cu-doped topological insulators. J. Appl. Phys. 2011, 109, 07E312. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chu, J.H.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science 2010, 329, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, T.; Bianchi, M.; Koleini, M.; Eich, A.; Pietzsch, O.; Wehling, T.O.; Frauenheim, T.; Balatsky, A.; Mi, J.-L.; Iversen, B.B.; et al. Wiesendanger, Controllable Magnetic Doping of the Surface State of a Topological Insulator. Phys. Rev. Lett. 2010, 110, 126804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Ming, W.; Huang, Z.; Liu, G.-B.; Kou, X.; Fan, Y.; Wang, K.L.; Yao, Y. Stability, electronic, and magnetic properties of the magnetically doped topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Rev. B 2013, 88, 235131. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; He, L.; van der Laan, G.; Zhang, R.; Wang, K. Experimental observation of dual magnetic states in topological insulators. Sci. Adv. 2019, 5, eaav2088. [Google Scholar] [CrossRef]
- Chang, C.-Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.-L.; et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 2013, 340, 167–170. [Google Scholar] [CrossRef]
- Wu, F.; Song, H.; Jia, J.; Hu, X. Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy. Prog. Nat. Sci.-Mater. 2013, 23, 408–412. [Google Scholar] [CrossRef]
- Faiza, A.; Omer, F.; Fatima, T.Z.; Muhammad, A.-U.-R. Structural and Thermoelectric Properties of Gd Doped Bi2Te3. Key Eng. Mat. 2018, 778, 189–194. [Google Scholar] [CrossRef]
- Hesjedal, T. Rare Earth Doping of Topological Insulators: A Brief Review of Thin Film and Heterostructure Systems. Phys. Status Solidi A 2019, 216, 1800726. [Google Scholar] [CrossRef]
- Yue, Z.; Zhao, W.; Cortie, D.; Yang, G.; Li, Z.; Wang, X. Modulation of Crystal and Electronic Structures in Topological Insulators by Rare-Earth Doping. ACS Appl. Electron. Mater. 2019, 1, 1929–1936. [Google Scholar] [CrossRef]
- Duffy, L.B.; Frisk, A.; Burn, D.M.; Steinke, N.-J.; Herrero-Martin, J.; Ernst, A.; van der Laan, G.; Hesjedal, T. Imposing long-range ferromagnetic order in rare-earth-doped magnetic topological-insulator heterostructures. Phys. Rev. Mater. 2018, 2, 054201. [Google Scholar] [CrossRef]
- Figueroa, A.I.; van der Laan, G.; Harrison, S.E.; Cibin, G.; Hesjedal, T. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films. Sci. Rep. 2016, 6, 22935. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.E.; Collins-McIntyre, L.J.; Li, S.; Baker, A.A.; Shelford, L.R.; Huo, Y.; Pushp, A.; Parkin, S.S.P.; Harris, J.S.; Arenholz, E.; et al. Study of Gd-doped Bi2Te3 thin films: Molecular beam epitaxy growth and magnetic properties. J. Appl. Phys. 2014, 115, 023904. [Google Scholar] [CrossRef]
- Balin, K.; Rapacz, R.; Weis, M.; Szade, J. Physicochemical analysis of Bi2Te3 – (Fe, Eu) – Bi2Te3 junctions grown by molecular beam epitaxy method. J. AIP Adv. 2017, 7, 056323. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.; Takabatake, T.; Kim, H.; Kim, M.; Jung, M.-H. Magnetic Transition to Antiferromagnetic Phase in Gadolinium Substituted Topological Insulator Bi2Te3. Sci. Rep. 2015, 5, 10309. [Google Scholar] [CrossRef]
- El Kholdi, M.; Averous, M.; Charar, S.; Fau, C.; Brun, G.; Ghoumari-Bouanani, H.; Deportes, J. Magnetic properties of a layered and anisotropic rhombohedral compound: Bi2(1-x)Gd2xTe3. Phys. Rev. B 1994, 49, 1711. [Google Scholar] [CrossRef]
- Fornari, C.I.; Bentmann, H.; Morelhao, S.L.; Peixoto, T.; Rappl, P.; Tcakaev, A.; Zabolotnyy, V.; Kamp, M.; Lee, T.-L.; Min, C.-H.; et al. Incorporation of Europium in Bi2Te3 Topological Insulator Epitaxial Films. Phys. Chem. C 2020. [Google Scholar] [CrossRef]
- Miedema, A.R. On the valence state of europium in alloys. J. Less Common Met. 1976, 46, 167–173. [Google Scholar] [CrossRef]
- Gschneidner , K.A., Jr. On the valences of europium and ytterbium in compounds. J. Less Common Met. 1969, 17, 13–24. [Google Scholar] [CrossRef]
- Rapacz, R.; Balin, K.; Wojtyniak, M.; Szade, J. Morphology and local conductance of single crystalline Bi2Te3 thin films on mica. Nanoscale 2015, 7, 16034–16038. [Google Scholar] [CrossRef]
- Weis, M.; Balin, K.; Rapacz, R.; Nowak, A.; Lejman, M.; Szade, J.; Ruello, P. Ultrafast light-induced coherent optical and acoustic phonons in few quintuple layers of the topological insulator Bi2Te3. Phys. Rev. B 2015, 92, 014301. [Google Scholar] [CrossRef]
- Weis, M.; Wilk, B.; Vaudel, G.; Balin, K.; Rapacz, R.; Bulou, A.; Arnaud, B.; Szade, J.; Ruello, P. Quantum size effect on charges and phonons ultrafast dynamics in atomically controlled nanolayers of topological insulators. Sci. Rep. 2017, 7, 13782. [Google Scholar] [CrossRef] [PubMed]
- Feutelais, Y.; Legendre, B.; Rodier, N.; Agafonov, V. A study of the phases in the bismuth—Tellurium system. Mater. Res. Bull. 1993, 28, 591–596. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Balandin, A.A. Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals. Nano Lett. 2010, 10, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Dang, W.; Cha, J.J.; Li, H.; Meister, S.; Peng, H.; Liu, Z.; Cui, Y. Few-Layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential. Nano Lett. 2010, 10, 2245–2250. [Google Scholar] [CrossRef] [PubMed]
- Denecke, R.; Ley, L.; Springholz, G.; Bauer, G. Resonant photoemission studies oTe. Phys. Rev. B 1996, 53, 4534–4538. [Google Scholar] [CrossRef] [PubMed]
- Szade, J.; Burian, W.; Zangrando, M.; Bondino, F.; Magnano, E.; Widuch, S.; Celiński, Z. Resonant photoemission spectroscopic studies of Eu2O3 thin film. Surf. Sci. 2015, 602, 1525–1531. [Google Scholar] [CrossRef]
- Bilzer, C.; Devolder, T.; Kim, J.-V.; Counil, G.; Chappert, C.; Cardoso, S.; Freitas, P. Study of the dynamic magnetic properties of soft CoFeB films. J. Appl. Phys. 2006, 100, 053903. [Google Scholar] [CrossRef]
- Szade, J.; Lachnitt, J.; Neumann, M. High-resolution Gd 4d photoemission from different intermetallic compounds. Phys. Rev. B 1997, 55, 1430. [Google Scholar] [CrossRef]
- Szade, J.; Neumann, M. Exchange splitting of photoemission lines in GdF3 and metallic Gd compounds. J. Phys. Condens. Matter 2001, 13, 2717–2725. [Google Scholar] [CrossRef]
- Shirley, D.A. Many-electron and final-state effects: Beyond the one-electron picture. In Photoemission in Solids I; Cardona, M., Ley, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1978; Volume 26, pp. 165–195. [Google Scholar] [CrossRef]
- Gao, Y. A new secondary ion mass spectrometry technique for III-V semiconductor compounds using the molecular ions CsM+. J. Appl. Phys. 1988, 64, 3760–3762. [Google Scholar] [CrossRef]
- Gusev, V.E.; Ruello, P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 2018, 5, 031101. [Google Scholar] [CrossRef]
- Mechri, C.; Ruello, P.; Breteau, J.M.; Baklanov, M.R.; Verdonck, P.; Gusev, V. Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry. Appl. Phys. Lett. 2009, 95, 091907. [Google Scholar] [CrossRef]
- Lomonosov, A.M.; Ayouch, A.; Ruello, P.; Vaudel, G.; Baklanov, M.R.; Verdonck, P.; Zhao, L.; Gusev, V.E. Nanoscale Noncontact Subsurface Investigations of Mechanical and Optical Properties of Nanoporous Low-k Material Thin Film. ACS Nano 2012, 6, 1410–1415. [Google Scholar] [CrossRef]
- Hase, M.; Kitajima, M. Interaction of coherent phonons with defects and elementary excitations. J. Phys. Condens. Matter 2010, 22, 073201. [Google Scholar] [CrossRef]
- Levchuk, A.; Wilk, B.; Vaudel, G.; Labbé, F.; Arnaud, B.; Balin, K.; Szade, J.; Ruello, P.; Juvé, V. Coherent Acoustic Phonons Generated by Ultrashort Terahertz Pulses in Nanofilms of Metals and Topological Insulators. Phys. Rev. B 2020, 101, 180102. [Google Scholar] [CrossRef]
- Oliver, M.R.; Dimmock, J.O.; McWhorter, A.L.; Reed, T.B. Conductivity Studies in Europium Oxide. Phys. Rev. B 1972, 5, 1078–1098. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balin, K.; Wojtyniak, M.; Weis, M.; Zubko, M.; Wilk, B.; Gu, R.; Ruello, P.; Szade, J. Europium Doping Impact on the Properties of MBE Grown Bi2Te3 Thin Film. Materials 2020, 13, 3111. https://doi.org/10.3390/ma13143111
Balin K, Wojtyniak M, Weis M, Zubko M, Wilk B, Gu R, Ruello P, Szade J. Europium Doping Impact on the Properties of MBE Grown Bi2Te3 Thin Film. Materials. 2020; 13(14):3111. https://doi.org/10.3390/ma13143111
Chicago/Turabian StyleBalin, Katarzyna, Marcin Wojtyniak, Mateusz Weis, Maciej Zubko, Bartosz Wilk, Ruizhe Gu, Pascal Ruello, and Jacek Szade. 2020. "Europium Doping Impact on the Properties of MBE Grown Bi2Te3 Thin Film" Materials 13, no. 14: 3111. https://doi.org/10.3390/ma13143111
APA StyleBalin, K., Wojtyniak, M., Weis, M., Zubko, M., Wilk, B., Gu, R., Ruello, P., & Szade, J. (2020). Europium Doping Impact on the Properties of MBE Grown Bi2Te3 Thin Film. Materials, 13(14), 3111. https://doi.org/10.3390/ma13143111