The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci. 2020, 55, 6195–6241. [Google Scholar] [CrossRef]
- Kamran, U.; Bhatti, H.N.; Iqbal, M.; Nazir, A. Green synthesis of metal nanoparticles and their applications in different fields: A review. Z. Für Phys. Chem. 2019, 233, 1325–1349. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Yan, L.; Li, N.; Shi, J.; Jiang, C. Recent developments in detection using noble metal nanoparticles. Crit. Rev. Anal. Chem. 2020, 50, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jun, B.-H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef]
- Powar, N.; Patel, V.; Pagare, P.; Pandav, R. Cu nanoparticle: Synthesis, characterization and application. Chem. Methodol. 2019, 3, 457–480. [Google Scholar]
- Shang, Y.; Hasan, M.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef]
- VandeVoort, A.R.; Arai, Y. Macroscopic observation of soil nitrification kinetics impacted by copper nanoparticles: Implications for micronutrient nanofertilizer. Nanomaterials 2018, 8, 927. [Google Scholar] [CrossRef]
- Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E. Oxidation of nano-sized aluminum powders. Thermochim. Acta 2016, 636, 48–56. [Google Scholar] [CrossRef]
- Laboureur, D.; Glabeke, G.; Gouriet, J. Aluminum nanoparticles oxidation by TGA/DSC. J. Therm. Anal. Calorim. 2019, 137, 1199–1210. [Google Scholar] [CrossRef]
- Noor, F.; Vorozhtsov, A.; Lerner, M.; Bandarra Filho, E.P.; Wen, D. Thermal-chemical characteristics of al–cu alloy nanoparticles. J. Phys. Chem. C 2015, 119, 14001–14009. [Google Scholar] [CrossRef]
- Noor, F.; Wen, D. Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn). J. Phys. Chem. Solids 2015, 85, 188–196. [Google Scholar] [CrossRef]
- Yabuki, A.; Tanaka, S. Oxidation behavior of copper nanoparticles at low temperature. Mater. Res. Bull. 2011, 46, 2323–2327. [Google Scholar] [CrossRef]
- Mansour, M.; Favergeon, L.; Pijolat, M. Kinetic modeling of low temperature oxidation of copper nanoparticles by O2. Thermochim. Acta 2013, 570, 41–50. [Google Scholar] [CrossRef]
- Wen, D.; Song, P.; Zhang, K.; Qian, J. Thermal oxidation of iron nanoparticles and its implication for chemical-looping combustion. J. Chem. Technol. Biotechnol. 2011, 86, 375–380. [Google Scholar] [CrossRef]
- Song, P.; Wen, D. Experimental investigation of the oxidation of tin nanoparticles. J. Phys. Chem. C 2009, 113, 13470–13476. [Google Scholar] [CrossRef]
- Susman, M.D.; Vaskevich, A.; Rubinstein, I. A general kinetic-optical model for solid-state reactions involving the nano kirkendall effect. The case of copper nanoparticle oxidation. J. Phys. Chem. C 2016, 120, 16140–16152. [Google Scholar] [CrossRef]
- Susman, M.D.; Feldman, Y.; Bendikov, T.A.; Vaskevich, A.; Rubinstein, I. Real-time plasmon spectroscopy study of the solid-state oxidation and kirkendall void formation in copper nanoparticles. Nanoscale 2017, 9, 12573–12589. [Google Scholar] [CrossRef]
- Nakamura, R.; Tokozakura, D.; Nakajima, H.; Lee, J.-G.; Mori, H. Hollow oxide formation by oxidation of al and cu nanoparticles. J. Appl. Phys. 2007, 101, 074303. [Google Scholar] [CrossRef]
- Nakamura, R.; Tokozakura, D.; Lee, J.-G.; Mori, H.; Nakajima, H. Shrinking of hollow cu2o and nio nanoparticles at high temperatures. Acta Mater. 2008, 56, 5276–5284. [Google Scholar] [CrossRef]
- Rice, K.P.; Paterson, A.S.; Stoykovich, M.P. Nanoscale kirkendall effect and oxidation kinetics in copper nanocrystals characterized by real-time, in situ optical spectroscopy. Part. Part. Syst. Charact. 2015, 32, 373–380. [Google Scholar] [CrossRef]
- Lee, J.-G.; Nakamura, R.; Choi, Y.-S.; Yu, J.-H.; Choi, C.-J. Formation of hollow copper oxide by oxidation of cu nanoparticles. Curr. Nanosci. 2014, 10, 101–103. [Google Scholar] [CrossRef]
- Eisenreich, N.; Schulz, O.; Koleczko, A.; Knapp, S. Comparison of kinetics, oxide crystal growth and diffusivities of nano-and micrometer-sized copper particles on oxidation in air. Thermochim. Acta 2017, 654, 93–100. [Google Scholar] [CrossRef]
- Maack, B.; Nilius, N. Oxidation of polycrystalline copper films–pressure and temperature dependence. Thin Solid Film. 2018, 651, 24–30. [Google Scholar] [CrossRef]
- Luo, X.; Sundararaj, U.; Luo, J.-L. Oxidation kinetics of copper nanowires synthesized by ac electrodeposition of copper into porous aluminum oxide templates. J. Mater. Res. 2012, 27, 1755–1762. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Y.; Hu, Z.-W.; Yu, S.-H. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano 2016, 10, 3823–3834. [Google Scholar] [CrossRef]
- Unutulmazsoy, Y.; Cancellieri, C.; Chiodi, M.; Siol, S.; Lin, L.; Jeurgens, L.P. In situ oxidation studies of cu thin films: Growth kinetics and oxide phase evolution. J. Appl. Phys. 2020, 127, 065101. [Google Scholar] [CrossRef]
- Xu, L.; Srinivasakannan, C.; Peng, J.; Yan, M.; Zhang, D.; Zhang, L. Microfluidic reactor synthesis and photocatalytic behavior of Cu@ Cu2O nanocomposite. Appl. Surf. Sci. 2015, 331, 449–454. [Google Scholar] [CrossRef]
- Xu, L.; Srinivasakannan, C.; Peng, J.; Zhang, L.; Zhang, D. Synthesis of Cu-CuO nanocomposite in microreactor and its application to photocatalytic degradation. J. Alloy. Compd. 2017, 695, 263–269. [Google Scholar] [CrossRef]
- Loran, S.; Cheng, S.; Botton, G.; Yahia, L.H.; Yelon, A.; Sacher, E. The physicochemical characterization of the cu nanoparticle surface, and of its evolution on atmospheric exposure: Application to antimicrobial bandages for wound dressings. Appl. Surf. Sci. 2019, 473, 25–30. [Google Scholar] [CrossRef]
- Kiseleva, I.; Ogorodova, L.; Melchakova, L.; Bisengalieva, M.; Becturganov, N. Thermodynamic properties of copper carbonates—malachite Cu2(OH)2CO3 and azurite Cu3(OH)2(CO3)2. Phys. Chem. Miner. 1992, 19, 322–333. [Google Scholar] [CrossRef]
- Preis, W.; Gamsjäger, H. Solid–solute phase equilibria in aqueous solution. Xvi. Thermodynamic properties of malachite and azurite—predominance diagrams for the system Cu2+–H2O–CO2. J. Chem. Thermodyn. 2002, 34, 631–650. [Google Scholar] [CrossRef]
- Henmi, H.; Hirayama, T.; Mizutani, N.; Kato, M. Thermal decomposition of basic copper carbonate, CuCO3· Cu(OH)2· H2O, in carbon dioxide atmosphere (0–50 atm). Thermochim. Acta 1985, 96, 145–153. [Google Scholar] [CrossRef]
- Koga, N.; Criado, J.M.; Tanaka, H. Apparent kinetic behavior of the thermal decomposition of synthetic malachite. Thermochim. Acta 1999, 340, 387–394. [Google Scholar] [CrossRef]
- Bartůněk, V.; Huber, Š.; Sedmidubský, D.; Sofer, Z.; Šimek, P.; Jankovský, O. CoO and Co3O4 nanoparticles with a tunable particle size. Ceram. Int. 2014, 40, 12591–12595. [Google Scholar] [CrossRef]
- Jankovský, O.; Storti, E.; Moritz, K.; Luchini, B.; Jiříčková, A.; Aneziris, C.G. Nano-functionalization of carbon-bonded alumina using graphene oxide and MWCNTs. J. Eur. Ceram. Soc. 2018, 38, 4732–4738. [Google Scholar] [CrossRef]
- Jankovský, O.; Sedmidubský, D.; Šimek, P.; Sofer, Z.; Ulbrich, P.; Bartůněk, V. Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate. Ceram. Int. 2015, 41, 595–601. [Google Scholar] [CrossRef]
- Dinsdale, A.T. SGTE data for pure elements. Calphad 1991, 15, 317–425. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. Metrological characterization of x-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 2007, 58, 883–891. [Google Scholar] [CrossRef]
- Bale, C.W.; Chartrand, P.; Degterov, S.; Eriksson, G.; Hack, K.; Ben Mahfoud, R.; Melançon, J.; Pelton, A.; Petersen, S. Factsage thermochemical software and databases. Calphad 2002, 26, 189–228. [Google Scholar] [CrossRef]
- Leitner, J.; Sedmidubský, D.; Jankovský, O. Thermodynamic Modeling of Copper Nanoparticles Oxidation. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; p. 020007. [Google Scholar]
- Gattinoni, C.; Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxide. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef]
- Fu, Q.; Cui, Z.; Xue, Y. Size dependence of the thermal decomposition kinetics of nano-CaC2O4: A theoretical and experimental study. Eur. Phys. J. Plus 2015, 130, 212. [Google Scholar] [CrossRef]
- Liukkonen, M. Assessment of Surface Energy Functions for Solid Elements (technical report); Helsinki University of Technology: Helsinki, Finalnd, 2007. [Google Scholar]
- Lu, X.-G.; Selleby, M.; Sundman, B. Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. Calphad 2005, 29, 68–89. [Google Scholar] [CrossRef]
- Studer, A.M.; Limbach, L.K.; Van Duc, L.; Krumeich, F.; Athanassiou, E.K.; Gerber, L.C.; Moch, H.; Stark, W.J. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010, 197, 169–174. [Google Scholar] [CrossRef]
- Gomes, S.I.; Murphy, M.; Nielsen, M.T.; Kristiansen, S.M.; Amorim, M.J.; Scott-Fordsmand, J.J. Cu-nanoparticles ecotoxicity–explored and explained? Chemosphere 2015, 139, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Leitner, J.; Sedmidubský, D.; Jankovský, O. Size and shape-dependent solubility of CuO nanostructures. Materials 2019, 12, 3355. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, E.K.; Grass, R.N.; Stark, W.J. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology 2006, 17, 1668. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, C.-y. Carbon-coated copper nanoparticles: Synthesis, characterization and optical properties. New J. Chem. 2009, 33, 1474–1477. [Google Scholar] [CrossRef]
- Kang, M.H.; Lee, S.J.; Park, J.Y.; Park, J.K. Carbon-coated copper nanoparticles: Characterization and fabrication via ultrasonic irradiation. J. Alloys Compd. 2018, 735, 2162–2166. [Google Scholar] [CrossRef]
Sample | XRD | TEM/EDS or SEM/EDS | |
---|---|---|---|
Phase Composition (wt. %) | Coherent Scattering Region (nm) | Sample Composition (Cu/O) (Atomic) | |
Cu-nano#1 | Cu (50) Cu2O (50) | Cu (30.0) Cu2O (13.6) | 3.2 |
Cu-nano#2 | Cu (80) Cu2O (20) | Cu (54.5) Cu2O (9.5) | 4.0 |
Cu-micro | Cu (100) | - | 99.0 |
Sample | 400 °C: Phase ComPosition (wt. %) | 400 °C: Relative Mass Change (%) | 600 °C: Phase ComPosition (wt. %) | 600 °C: Relative Mass Change (%) |
---|---|---|---|---|
Cu-nano#1 | CuO (100) | + 18.3 | CuO (100) | +18.3 |
Cu-nano#2 | Cu (2); Cu2O (15); CuO (83) | + 20.1 | CuO (100) | +22.3 |
Cu-micro | Cu (65); Cu2O (20); CuO (15) | + 4.3 | Cu (5); Cu2O (40); CuO (55) | +15.5 |
Sample | Relative Mass Change (%) | 1st Peak Temperature (°C) | 2nd Peak Temperature (°C) | Total Heat Effect 50–600 °C (J/g) |
---|---|---|---|---|
Cu-nano#1 | 17.9 | 186.8 | 291.3 | −1986 |
Cu-nano#2 | 21.4 | 198.4 | 295.7 | −2378 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitner, J.; Sedmidubský, D.; Lojka, M.; Jankovský, O. The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles. Materials 2020, 13, 2878. https://doi.org/10.3390/ma13122878
Leitner J, Sedmidubský D, Lojka M, Jankovský O. The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles. Materials. 2020; 13(12):2878. https://doi.org/10.3390/ma13122878
Chicago/Turabian StyleLeitner, Jindřich, David Sedmidubský, Michal Lojka, and Ondřej Jankovský. 2020. "The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles" Materials 13, no. 12: 2878. https://doi.org/10.3390/ma13122878
APA StyleLeitner, J., Sedmidubský, D., Lojka, M., & Jankovský, O. (2020). The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles. Materials, 13(12), 2878. https://doi.org/10.3390/ma13122878